选择特殊符号
选择搜索类型
请输入搜索
De Bellescize于1932年提出同步检波理 论首次公开发表了对锁相环的描述实现 同步检波。到1940年锁相环第一次用于电 视接收机扫描同步装置中改善了电视图 像质量。随后由杰斐和里希廷利用锁相环 路作为导弹信标的跟踪滤波器获得成功 第一次发表了包含有噪声效应的锁相环路 线性理论分析的文章同时解决了锁相环 路最佳化设计的问题。随着集成电路技术的发展逐渐出现了集成的环路部件、通用 单片集成锁相环及多种专用集成锁相环 PLL变成一个成本低、使用简便的多功能组 件。锁相原理的应用已经深入到通 信、雷达、原子物理学流体力学等。
由于锁相环路结构简单性能优越等 特点广泛应用于无线电通信、数字电 视、广播等众多领域。概括起来相锁环的 应用主要以下几方面。
(1)时钟发生器频率综合器。锁相环锁 定后输出时钟频率是输入时钟频率的N 倍也就是说锁相环可以从低频输入时钟 产生高频输出时钟。系数N是固定的称为 时钟发生器可以变化的称为频率综合器。 与石英晶体振荡器相比用锁相环提供时 钟成本低对印刷电路板、芯片封装的带宽 要求大为降低。
(2)时钟恢复。数字通信系统中发送端 往往只发送数据流而不传输时钟信号。接 收端为了能正确地接收数据必须从数据 中恢复出同步时钟。
(3)抑制时滞效应。时钟信号负载大需 通过缓冲器来提高其驱动能力;芯片内部 有连线延迟为了抑制时滞、提高系统的稳 定性可以采用锁相环来校准时钟。
(4)调制和解调器。锁相环本身就是一 个调频解调器经过合理的应用锁相环路 可以作任何调制方式的调制器和解调器。
锁相环诞生以来已越来越广泛地应 用于科研、生产、生活中。 2100433B
锁相是使被控振荡器的相位受标准信号或外来信号控制的一种技术,用来实现与外来信号相位同步,或跟踪外来信号的频率或相位。锁相是相位锁定的简称,其含义是表示两个信号的之间的相位同步。
锁相环技术(PLL)是实现相位自动控制的一门新技术。锁相即相位锁定自动相位 控制(APC)利用相位自动调节的方法实现 两个信号的相位同步。锁相环就是完成这 一任务的相位负反馈控制系统。锁相是促进信号之间的相位同步,从而促进锁相环的运行。
锁相环锁定频率和相位是怎样的一个过程 1,看图中,当△w为0时,鉴相器才会有直流输出,但锁相环没有
反馈控制
如果你是智能机啊 下个文件锁 就可以了 &nbs...
锁相放大器的设计
锁相放大器的设计 【摘要】本系统以超低功耗 MSP430G2553 作为处理核心,用 OPA244、 OPA2237、LM324N、LM3119 等实现对微弱信号的检测。该电路由信号调理模 块、移相器模块、相敏检波器和数码管四个模块组成。 信号调理模块包括加法器, 交流放大器,四阶带通滤波器, 信号调理电路子模块, 其具有微弱信号放大和调 理、抑制干扰和噪声的作用。移相器模块由多个比较器,积分器组成,实现与被 测信号的同步,产生可 180°移相的方波传输给 MCU,由数码管显示被测信号的 幅度。 【关键词】微弱信号 ;移相器 ;msp430;相敏检波器 1.锁相放大器设计原理 根据相关接收原理,在相关接收中, 可以把两个信号的函数 f1(t)和 f2( t) 的相关函数定义为: 它是度量一个随机过程在时间 t 和两时刻线性相关的统计参数,如果 f1( t) 和 f2(t)完全没有关系,则相
单相电力锁相环技术综述
锁相同步技术是保障并网装置正常运行的一个重要因素,本文综述了当前主要的单相锁相环系统及其控制。结合三相锁相环的控制方法,对几种常见的鉴相器改进方案,如虚拟乘法器鉴相、微分法构造虚拟两相鉴相及FIR构造虚拟两相鉴相法,进行了理论分析、MATLAB建模、仿真分析,并基于DSP实验平台进行了实验验证。
锁相技术最初应用于电子技术是为了得到频率准确和稳定的振荡信号。采用电子电路使一个振荡信号与一个标准(或外来)振荡信号保持有固定的相位差,使信号的频率锁定在标准(或外来)信号的频率上,这种技术称为锁相技术。把锁相技术应用于控制技术时需要引入变换装置,例如可先采用光电编码器将转速信号变换成频率信号,再用锁相电路把这一频率锁定在参考信号标准频率的倍数或分数值上,这样即可实现对转速的准确控制。锁相控制系统的速率控制精度很高,长期工作误差可小于0.02%,常用于高精度的速率同步系统,如要求严格同步的摄影或记录设备、多辊传送系统等。
锁相分频器可用于很高频段、甚至微波频段的分频。
数字倍频锁相环模型实际电路中通常选用数字鉴频鉴相器(PFD),压控振荡器(VCO)的输出经 N 分频后进入鉴相器与参考频率鉴相,产生的相差信号经环路滤波器积分,产生直流分量来牵引 VCO 频率入锁。而取样锁相环模型与数字倍频锁相环相比,其采用取样鉴相器(SPD)代替了 PFD。参考频率进入脉冲发生电路后产生含有参考信号各次谐波的脉冲,再用其驱动采样电路,对微波振荡器的信号进行采样,最后经过保持电路输出低频相差信号经环路滤波器的积分,产生直流分量牵引并最终使环路入锁。VCO 频率锁定在参考频率的 N 次谐波上 。
同常规锁相环路相比,在鉴相器之前加入了脉冲形成电路,用取样鉴相器替代了普通鉴相器。脉冲形成电路是利用阶跃恢复二极管( SRD) , 将参考信号转换为同频率的窄脉冲输出。应用 SRD 生成窄脉冲的主要机理就是半导体中的电荷存储效应。取样鉴相器分取样和保持两步来完成鉴相。 取样脉冲控制取样开关的通断,当取样开关接通时,微波信号为保持电容充电,直到取样开关断开,此时保持电容上的电压将被保持到下个周期, 直到取样开关再次接通, 形成差拍电压。 该电压经环路滤波器处理后对 VCO 频率进行控制 。
环路滤波器是锁相环路中的重要组成部分, 除了滤除高频分量外,还具有调整环路参数的作用,对于环路的捕获特性和稳定性都具有重要作用。因取样鉴相器鉴相增益较低, 仅为几十至几百 mA, 因此, 采用有源的环路滤波器对比较后的误差电压信号进行放大。为保证环路顺利入锁, 还需设计扩捕扫描电路。当环路未锁定时, 扩捕电路开始振荡, 使得 DRO输出频率扫过设定频率,使环路入锁,环路锁定后扩捕电路停止振荡。一般将环路滤波器和扩捕振荡电路集成到一个运放芯片上, 利用电路本身的反馈状态控制扩捕电路能否起振。附加扩捕电路的环路滤波器电路为文氏桥振荡器,采用有源比例积分滤波器作为环路滤波器,其特性接近于理想的积分滤波器, 两个参数独立可调, 并具有滞后 - 导前的作用,有助于对环路进行优化设计 。