选择特殊符号
选择搜索类型
请输入搜索
天然石墨,顾名思义就是自然界天然形成的石墨,一般以石墨片岩、石墨片麻岩、含石墨的片岩及变质页岩等矿石出现。
石墨的工艺性能及用途主要决定于其结晶程度,天然石墨依其结晶形态可分成晶质石墨(鳞片石墨)和隐晶质石墨(土状石墨)两种工业类型。
晶质(鳞片)石墨矿石中,石墨晶体直径大于1μm,呈鳞片状;矿石品位较低,但可选性好;与石墨伴生的矿物常有云母、长石、石英、透闪石、透辉石、石榴子石和少量黄铁矿、方解石等,有的还伴生有金红石及钒等有用组分;矿石呈鳞片状、花岗鳞片或粒状变晶结构,片状、片麻状或块状构造。
晶质(鳞片)石墨根据固定碳含量分为高纯石墨、高碳石墨、中碳石墨及低碳石墨。
高纯石墨(固定碳含量大于或等于99.9%)主要用于柔性石墨密封材料,核石墨,代替白金坩埚用于化学试剂熔融及润滑剂基料等;
高碳石墨(固定碳含量94.0%~99.9%)主要用于耐火材料、润滑剂基料、电刷原料、电碳制品、电池原料、铅笔原料、填充料及涂料等;
中碳石墨(固定碳含量80%~94%)主要用于坩埚、耐火材料、铸造材料、铸造涂料、铅笔原料、电池原料及染料等;
低碳石墨(固定碳含量50.0%~80.0%)主要用于铸造涂料。
隐晶石墨也称土状石墨或无定形石墨,隐晶质石墨矿石中,石墨晶体直径小于1μm,呈微晶的集合体,在电子显微镜下才能见到晶形;矿石品位高,但可选性差;与石墨伴生的矿物常有石英、方解石等;矿石呈微细鳞片-隐晶质结构,块状或土状构造。
隐晶质石墨矿石则主要分布于接触变质型矿床中。实际上石墨矿石中的石墨片径是参差不齐的,所谓晶质石墨矿石中,也可能含隐晶质石墨,含量较多时通常称为混合型石墨矿石,隐晶质石墨矿石中也可能含少量片径略大于1μm的鳞片石墨。
隐晶质石墨主要用于铅笔、电池、焊条、石墨乳剂、石墨轴承的配料及电池碳棒的原料等;无铁要求的隐晶质石墨主要用于铸造材料、耐火材料、染料及电极糊等原料。
据不完全统计,世界天然石墨储量约为20亿吨,其中晶质石墨约8亿吨。中国的天然石墨储量居世界第一位,晶质石墨矿总保有储量矿物4.73亿吨。
中国现已形成采矿、选矿、加工、提纯和制品系列配套的综合性天然石墨产业。中国是世界上最大天然石墨生产国,2009年天然石墨生产达到175.56万吨,中国的生产约占世界总产量的55%,居世界首位。
2015年4月,国内天然石墨市场价格稳中趋降,局部下滑100元/吨左右,跌幅在5%左右。业内人士表示,天然石墨价格下跌使得锂电负极成本有望下降。
石墨的化学成分为碳(C)。天然产出的石墨很少是纯净的,常含有杂质,包括SiO2、Al2O3、MgO、CaO、P2O5、CuO、V2O5、H2O、S、FeO以及H、N、CO2、CH4、NH3等。天然石墨矿物呈铁黑、钢灰色,条痕光亮黑色;金属光泽,隐晶集合体光泽暗淡,不透明;硬度具异向性,垂直解理面为3~5,平行解理面为1~2;质软,密度为2.09~2.23g/cm3,有滑腻感,易污染手指。矿物薄片在透射光下一般不透明,极薄片能透光,呈淡绿灰色,折射率1.93~2.07,在反射光下呈浅棕灰色,反射多色性明显,Ro灰色带棕,Re深蓝灰色,反射率Ro23(红),Re5.5(红),反射色、双反射均显著,非均质性强,偏光色为稻草黄色。
石墨属复六方双锥晶类,呈六方板状晶体,常见单形有平行双面、六方双锥、六方柱,但完好晶形少见,一般呈鳞片状或板状,集合体呈致密块状、土状或球状。
天然石墨和人造石墨主要的区别是,大自然产生的石墨和人工制造而成石墨,不是体现在石墨的深加工,而是先天的问题。具体的分解请查看石墨分类与特点:1.1 天然石墨 天然石墨是富碳有机物在高温高压地...
石墨可分为天然石墨与人造石墨,二者结构相近,物理化学性质相似,但用途却有着较大差别。众多研究中,某些研究者没有注意到两者的区别而笼统地称之为石墨。这种将二者混为一谈的结果造成了很多的误导,甚至是决策的...
*经工处理石墨规整度更相储存锂离量更且循环性能优良造价高目前
经典-天然石墨与人造石墨的区别
天然石墨与人造石墨负极材料辨别方法剖析 锂离子电池发展 20 年来 ,理论与学术界均未对锂离子电池用碳 (石墨类 )负极材 料 :天然石墨和人造石墨负极材料的辨别方法进行深入剖析 ,并明确科学的辨别 与判定方法,因此行业出现了天然石墨和人造石墨负极材料边界不清, 鱼龙混杂 的现象,给材料的合理、有效使用造成了极大影响。 天然石墨负极材料系采用天然鳞片晶质石墨,经过粉碎、球化、分级、纯化、表 面等工序处理制得, 其高结晶度是天然形成的。 而人造石墨负极材料是将易石墨 化碳如石油焦、针状焦、沥青焦等在一定温度下煅烧,再经粉碎、分级、高温石 墨化制得,其高结晶度是通过高温石墨化形成的。 正是由于两者在原料和制备工 艺上存在本质的差别,使其在微观形貌、晶体结构、电化学性能、加工性能上存 在明显差异。为了统一标准、科学辨别、正确判定天然与人造石墨负极材料,现 将经过多年探索、反复验证、切实可行的科学
沥青包覆改性天然石墨
沥青包覆改性天然石墨
天然石墨是重要的战略资源, 中国的石墨储量和产量都居世界首位。天然石墨大多只是应用在相对简单的初加工领域, 据统计, 大部分天然石墨只是作为原料, 用作粉末冶金增碳剂、高温碳质耐火材料、工业金刚石、机械制造润滑材料、印刷墨粉、铅笔制作等等。
石墨具有优异的导电和导热性能, 具有良好的化学和高温稳定性,润滑和涂敷性能优良,是重要的非金属矿物资源。本文在分析石墨微观结构、性能的基础上,综合分析石墨加工改性方法,提出石墨的纳米组装的概念,并提出多种石墨的纳米结构组装方法。
通过纳米结构组装,可以制备成新型石墨功能材料和结构材料,有可能成为新型储能 材料,在新兴的新能源汽车、风力发电、环境治理等行业具有广阔的发展前景和巨大的应用潜力。
1 石墨中碳原子的化学键结构特征
在原子分子水平上, 石墨中碳原子被杂化, 形成sp2杂化轨道, 在XY方向上,碳原子通过共价键相连形成六方环,在平面上成层分布,形成碳原子层。层面内碳原子之间通过共价键结合,电子活性低,但是层面间只有很弱的分子键存在,电子活动性高。这种特殊的结构特征使石墨内部包含丰富的载流子,表现出优异的传导性能,使石墨能够被用做电极材料、润滑材料、传热材料等。
2 石墨的纳米结构组装
可以采用多种方法对石墨进行纳米结构组装: 通过增加功能空间、增加功能粒子,制备新型石墨材料,开发性能良好的石墨制品; 通过制备石墨层间化合物的方法,引入纳米功能粒子组装石墨材料; 通过制备石墨合金方法组装石墨材料; 通过引入缺陷、孔隙结构增加储能空间组装石墨材料; 通过调 节石墨晶体排布方向减少石墨材料的性能异向性, 提高性能均匀性等。
2.1 石墨层间化合物引入纳米功能粒子组装
石墨新材料石墨具有很好的层状结构,层面内碳原子以sp2杂化轨道电子形成的共价键形成牢固的六角网状平面, 碳原子间具有极强的键合能(345 kJ/mol); 而在层间碳原子,则以微弱的范德华力相结合(键能 16.7 kJ/mol)。正因为石墨中层面与层间键合力的巨大差异及微弱的层间结合力,导致多种原子、分子、粒子团可以顺利突破层间键合力,插入层间,形成石墨层间化合物(GICs-GraphiteIntercalationCompounds)。
这些插入物在石墨层内规律排布, 可以形成规则的阶结构和畴结构等(图 1(a))。石墨层间化合物的单层厚度(Identity period)与阶数有关(Ic = d1 + 0.3354(n–1))(图 1(b))。石墨层间化合物可以形成规则的1, 2, 3,…10阶结构,形成的石墨层间化合物可以是受主(acceptor)或施主型(donor)的离子型(Ionic)的插层剂,也可以是共价型 (Covalent)的插层剂(F,O+OH)。在石墨层间化合物中,插层剂可以双插层(binary)、三插层(ternary)或多插层。在石墨层间,插层剂还可以形成局部短程有序的畴结构。
目前已有200多种原子、分子、粒子团能够顺利突破层间键合力插入层间,形成多种石墨层间化合物。通过石墨层间化合物可以引入纳米功能粒子,在石墨微观结构里,实现纳米功能粒子组装,创造和提高石墨储能功能,组装成新的材料,石墨层间化合物不但保留了石墨原有的性能,而且附加了原有石墨和插层物质均不具备的新性能。石墨邦 www.shimobang.cn —国内首家碳石墨电商平台 插层物 的多少,在石墨层间的排布规律,特别是其阶结构、畴结构等对于石墨层间化合物的性能有决定性作用。
氢的插入有可能使石墨成为储氢材料;锂离子在石墨层间的插入和脱插可以实现充放电,使得石墨成为性能良好的二次电池材料。石墨不仅可以作为二次锂离子电池负极材料,而且可以作为一次电池的正极电池材料,例如作为锂氟电池正极材料、高能碱性电池正极导电材料,以及燃料电池中双极板材料、核能、太阳能(硅的制备)结构材料等。
锂资源紧缺、价格高,可以采用资源更加丰富和廉价的钠离子,通过合成钠的石墨层间化合物, 制备钠离子电池。通过钠离子在石墨层间的插入和脱插实现充放电,从而存储能源。氯化铅插层形成的石墨层间化合物是性能优异的打印墨粉;溴插层形成的石墨层间化合物是性能优异的红外屏蔽材料等; 氯化铁等插层形成的石墨层间化合物对毫米波有良好的衰减性能,有可能成为毫米波遮蔽干扰屏障材料。采用石墨层间化合物可以在石墨碳原子层间引入纳米功能粒子组装石墨材料, 实现石墨的纳米组装,获得优异性能的新材料。
2.2 碳石墨合金方法引入纳米功能粒子组装碳石墨新材料
通过合金方法制备类似于合金的材料, 例如碳石墨合金方法可以改变碳石墨材料的性能。因为碳、硼、氮三种元素在元素周期表中位置靠近,碳原子半径与硼原子、氮原子也相近, 硼、氮也可能替代碳石墨材料结构中的碳原子,形成结构稳定的原子置换型固溶体,但是却可以改变石墨原来的性能。
当硼原子替代碳原子时,可以形成硼碳合金材料(图2),随着硼碳比例不同,调整反应条件,在一定温度压力下,还可以形成 B50C2、B8C、B13C2、B4C、BC3等不同组成的硼碳合金。引入氮原子后, 可以形成B-C-N三元体系,获得更多的硼碳氮合金材料(图3)。
通过引入碳、硼、氮等物质形成固溶体,可以对石墨进行纳米组装, 改变石墨的性能, 制备新材料。石墨是导电体,当硼原子替代碳原子时,形成的硼碳氮合金却变成了绝缘体或者半导体。硼碳氮合金还可以形成不同特征的半导体:n型半导体、p型半导体。
石墨是兼具金属和半金属特性的具有金属光泽的材料,当硼原子替代碳原子时,形成的硼碳合金(CxB)的金属性更强;而氮替代形成的硼碳氮h-BN,完全不具金属性, 成为绝缘体。通过原子置换形式, 用硼–氮等替代石墨中的碳原子,形成结构稳定的置换型固溶体。采用这种硼碳合金方法制备石墨合 金,可以引入纳米功能粒子组装石墨材料。通过硼的替换,已经能够制备出二层、三层的硼碳氮二维烯片材料等新型功能材料。
2.3 通过打开石墨层片制备纳米石墨烯片
理论上,理想石墨烯是二维晶体,基本结构就是标准的碳原子组成的六方网(图4(a))。根据亮场透射式电子显微镜下观测到的形貌绘制了处于自由状态的悬空石墨烯的原子结构示意图(图4(b)),单层石墨烯并非完美的二维平面, 而是在约10~25 nm范围内表面褶皱与水平面局部存在夹角,褶皱高度可达1nm。一个独立的碳原子层是石墨烯的理想状态,石墨烯与三维石墨在结构上的最大差异是其厚度。
理论上,石墨可以看成是由石墨烯堆叠而成, 石墨烯与石墨的层数界限也成为判断是否是石墨烯的依据。当碳原子层的层数少于10层时,其电子结构与普通三维石墨有很大差异, 因此, 碳材料学界一般将10层以下碳原子层组成的材料(Graphene和Few-layer graphenes)统称为石墨烯材料(Graphenes), 一般称为单层石墨烯、双层石墨烯和多层石 墨烯。
通常状态下, 石墨具有鳞片状的片状结构, 只是石墨的鳞片大小厚度有别。理论上将石墨的鳞片打开,将本身堆积在一起的石墨碳原子层打开, 就可以形成单层或多层的石墨烯, 少10层时也被称为石墨烯。通常很难做到均匀厚度的大片石墨烯,通常也将获得的纳米尺度薄层石墨称为“纳米石墨烯片” 。
在强氧化性酸的环境下,石墨易形成石墨层间化合物。利用石墨这一特性, 将天然石墨置于发烟硝酸中,并加入硝基甲烷, 配制成液体炸药, 使用塑料容器盛装后放入爆轰反应釜中引爆,收集爆轰产物,即得到薄层石墨烯片,平均厚度达到14 nm, 属于多层石墨烯片材料。
通过剥离石墨鳞片制备二维层状材料, 可以获得纳米石墨烯片,单一碳原子层片内很强的共价键使石墨烯片具有很高的机械强度,是潜在的力学结构件材料。这些石墨烯片叶还具有优异的电化学性能、润滑性能、比表面积大,是潜在的超高电容器的材料, 具有良好的应用前景。
石墨烯独特的结构和优良的性能使其在电化学生物传感器方面有良好应用潜力。石墨烯还具有低细胞毒性、溶解能力强、光致发光稳定等优点,在酶生物传感器中表现出灵敏度高、选择性好以及稳定性好等优异性能。石墨烯及其复合物有可能构建传感系统和生物成像,在酶传感器、免疫传感器、DNA 传感器等酶电化学生物传感器内发挥作用。但是,石墨烯与酶的作用机制、石墨烯与传感性能的关系、酶在石墨烯上固载有效性等问题仍有待深入研究。由于量子限域效应和边界效应,石墨烯材料的衍生物–石墨烯量子点有光致发光性能,在生物成像、生物传感器等方面有应用潜力,但是其产率低、难以精确控制尺寸。新的石墨烯量子点制备 方法、表面修饰方法对于石墨烯及其复合物生物传感器的发展有重要意义。
2.4 通过制造孔隙结构增加活性空间
在石墨结构里制造缺陷也可以对石墨进行结构组装。引入缺陷最有效的方法就是制造碳原子的空位,可以采用氧化活化等方法制造孔隙结构增加活性空间,氧化石墨就是一种有效方法。在多孔碳材料中增加孔隙, 提高比表面积,能够引入功能空间,使得锂离子储存量提高,提高双电层发生空间,从 而增大了双电层电容器(Electrical Double-Layer Capacitors-EDLC)的能量存储和转换。
在石墨中设法引入孔隙,增加其比表面、同样也可能增大储能空间。通过锂离子石墨层间化合物制备的锂离子电池, 与孔隙效应制备的超级电容器的有机结合, 有可能得到更高功率和容量的储能器件, 大幅度延长采用清洁能源的新能源电动车工作时间。
通过石墨插层化合物方法,制备石墨残余石墨层间化合物,进而制备成膨胀石墨(图 5(a))。采用硫酸石墨插层混合物高温热处理的方法,已经能够大批量制备膨胀石墨。膨胀石墨具有丰富的孔隙结构,能够吸收一系列污染物,治理油类污染。膨胀石墨也能被压制成石墨纸,用作各种耐腐蚀的密封垫、手机散热片等。采用微波膨胀法可以获得膨胀效果更好的膨胀石墨(图5(b)),为更高性能的膨胀石墨,甚至石墨烯片的制备提供了更有效的方法。
通过在石墨中引入孔隙,制造孔隙结构增加储能空间。膨胀石墨中有大量孔隙,可以在此基础上制备一系列膨胀石墨复合材料, 例如金属膨胀石墨复合材料。将膨胀石墨加入到水泥中,能够制备膨胀石墨水泥复合材料,这种材料是高弹性、高韧性 建筑材料, 可以提高桥梁的减震性能。
2.5 通过调节石墨晶体排布方向减少石墨制品的性能异向性
石墨具有层状结构,三维方向上的化学键存在很大差异,导致单个石墨晶体的性能也具有异向性,包括力学性能、电学性能、热学性能等。石墨的异向性有很大的应用价值, 石墨层片内很强的共价键使石墨具有很强的机械强度,可是石墨层间微弱的分子键却使石墨层片极易完全解理,使石墨具有优 异的润滑性能。
在使用过程中,石墨即使被高速运转的轮子划开,仍然保持自己的共价键,保持着良好的机械强度, 因此是耐腐蚀的性能优异的摩擦材料。但是在实际应用时, 石墨晶体的异向性经常会带来一些危害, 因此,需要采取一些方法减少石墨材料的异向性。通过调节石墨晶体排布方向减少石墨材料的性能异向性,提高性能的均匀性, 主要通过两种方法来实现:人为控制石墨鳞片的排布方向或者将石墨片制备成球形石墨。
2.5.1 通过调节石墨晶体排布方向改善石墨制品的均匀性
通过调节石墨晶体排布方向减少石墨材料的性能异向性,可以改善石墨性能的均匀性。石墨晶体本身是片状结构,受到外力作用,必然会沿着与外力垂直的方向定向排列。因此,采用石墨特别是大鳞片石墨作为原料制备石墨制品中,石墨很容易定向排列, 导致石墨制品的性能呈现出异向性。
将制品放在液体中,采用等静压方式制备石墨制品,可以避免石墨的异向性,即可获得各项同性的石墨制品。通过调整石墨鳞片的方向性,减少石墨制品的异向性,既可保证石墨优异性能的发挥,又可避免石墨单晶的异向性。
采用普通制备方法获得的石墨制品中石墨晶体的定向排列(图6(a)),而采用等静压方式制备的石墨制品中石墨晶体不同方向排列的都有,虽然各个石墨小晶体仍然呈各向异性,但是从宏观上看,形成近似于乱层结构“(tubostratic stacking)”石墨(图 6(b)),从而表现出良好的各向同性。
2.5.2 将石墨鳞片制备成球形石墨减少石墨异向性
石墨是柔性材料,很容易变形,采用球磨进行球形化等粉体加工处理,可以使鳞片状的石墨片转化为球形石墨。球形化和分级处理后的石墨材料用于锂电池的电极材料,使锂离子电池性能得到很大提高。
采用搅拌磨和微细粒子复合化,对天然石墨进行球形化整形,获得球化石墨,在锂离子电池等领域得到广泛应用。但是,工业球形石墨的制备工艺复杂,球形化产率较低, 球形石墨生产成本很高,球形化过程中鳞片石墨浪费巨大。虽然现在通过球磨工艺已经能够由石墨片生产出球形石墨,但是石墨球形化的理论依据还很不明确。石墨球形化机理的深入研究有可能为球形石墨的研制、性能提高提供理论依据。
3 天然石墨的结构及组装状态
3.1 天然石墨的结构
石墨具有多种同质多像体,从石墨晶体结晶学角度来看,至少存在两种晶体结构形式:(a)六方晶系的六方石墨; (b)三方晶系的菱形石墨(图7)。
3.2 天然石墨的自然组装
事实上,即使是常见的鳞片石墨,其结晶颗粒、结晶程度也会有所不同, 鳞片的排布规律也会有很大差异,既可以是六次对称的六方晶体、三次对称结构的菱面体晶体(图7), 也可以形成完美的球形体(图8(a))。对天然球形石墨的微观结构、特异性能还有待进一步深入研究。球形石墨中存在锥形石墨,通过电子显微技术可以发现在天然球形石墨中也存在大量大小不等的球形化石墨颗粒, 天然石墨中可能存在自然的微观组装结构(图8(b))。对于天然石墨微观组装结构和性能的深入研究,可以为工业球形石墨的制备工艺的改善、球形化率的提 高提供理论依据,推动石墨矿物资源更有效的开发利用。
3.3 天然石墨的成因、结构和性能
不同地方的石墨成矿机理存在差异,有区域变质型石墨矿、接触变质型隐晶质石墨矿和岩浆热液型晶质石墨矿床三种成因。成因不同,石墨的结构性能存在差异,其使用效能也必然有差异。工业上石墨矿石仅仅分为晶质(鳞片状)石墨矿石和隐晶质(土状)石墨矿石两种工业类型。
目前对于天然石墨的结构认识只有菱形和六方两种石墨结构,事实上,自然界的石墨形成条件多种多样,科学研究已经证明也存在天然自组装的石墨结构状态。
作为天然资源,不同地区的石墨成因类型不同,微观结构存在差异,使其在晶体结构和晶体排布特点上存在差异,因此其性能,特别是使用效能也必然不同,进而决定其不同的工业价值和用途。在金刚石合成方面,与六方石墨相比,菱形石墨更容易制备金刚石、生产效率更高。
对于天然石墨的微观结构设计和物理化学性能分析,对于石墨的使用效能和实际应用有重要意义。对于天然石墨的微结构和性能研究,有可能开拓天然石墨作为功能材料的巨大潜力。 通过分析天然石墨微观组装结构, 有可能推动石墨矿物资源的有效开发利用。通过纳米结构组装、可以获得新型材料, 通过石墨的微观结构设计,可以调整其性能, 设计新型石墨功能材料,开发新型石墨储能材料和石墨烯片材料。
4 结束语
本文在分析石墨微观结构、性能基础上,提出了石墨的纳米组装的概念,认为可以采用多种方法进行石墨的纳米结构组装:采用制备石墨层间化合物,制备碳石墨合金等方法引入纳米功能粒子,组装碳石墨材料; 通过打开石墨层片制备纳米石墨烯片; 通过制造孔隙结构增加活性空间;通过制备球形石墨,调节石墨晶体排布方向减少石墨材料的性能异向性,提高性能的均匀性。
目前对于天然石墨的结构认识只有菱形和六方两种石墨结构,可是自然界的石墨形成条件多种多样,还存在天然自组装的石墨结构状态。通过分析天然石墨微观组装结构, 有可能推动石墨矿物资源更有效的开发利用。通过石墨结构的纳米组装,可以进行石墨的加工和改性,获得更高性能的石墨材料制品,开发石墨作为新型碳功能材料的巨大潜力。
一种铝电解槽用石墨阴极炭块及其制造方法。主要特征是利用天然石墨作为生产阴极炭块的骨料,方法中的独特之处在于天然石墨骨料的制取。发明的产品无需对阴极炭块进行石墨化处理,而主要技术指标都超过了普通和半石墨质阴极炭块,接近甚至超过半石墨化阴极炭块。可合理使用资源,节省能源,使用中可降低铝的成本。
石墨是一种极为重要的非金属矿产,其加工制品广泛应用于钢铁、新能源、新材料等新兴产业,被认为是支撑未来高新技术发展的重要战略资源。
天然石墨是天然矿物,一般形成于高温地质条件,广泛分布于变质矿床,由富含有机质或碳质的沉积岩经区域变质作用形成。一般可分为晶质石墨(鳞片)和隐晶质石墨(土状)。
人造石墨是用粉状的优质煅烧石油焦,在其中加沥青作为粘结剂,再加入少量其他辅料。各种原材料配合好以后,将其压制成形,然后在2500~3000℃、非氧化性气氛中处理,使之石墨化。
石墨的产量情况
2011年-2016年我国天然石墨产量(万吨)
2013年-2018年我国人造石墨产量及预测
(万吨)
天然石墨:2013年国际政治经济形势复杂多变,经济复苏乏力,我国经济也处于弱周期低增速运行状态,呈现出“稳中趋降”态势。作为天然石墨重要的终端市场,钢铁行业持续低迷,钢企大幅亏损,因此2013年国内天然石墨市场总体呈现量价齐跌的局面。除2013年以外,其他时间我国天然石墨产量处于一种稳定的势态。
人造石墨:近年来受新能源汽车应用影响,人造石墨需求持续上升。目前国内新能源汽车锂电池所采用的负极材料大多使用人造石墨,新能源汽车在国家政策的扶持下呈爆发式增长阶段,带动动力电池的大幅增长,未来几年动力电池是拉动人造石墨产量大幅上升的主要引擎。
石墨的进出口情况
2011年-2017年我国天然石墨进口情况(万吨)
2011年-2017年我国人造石墨进口情况(万吨)
2011年-2017年我国天然石墨出口情况(万吨)
2011年-2017年我国人造石墨出口情况(万吨)
我国石墨进出口特点:低出高进
1、低质量出口高质量进口。出口大都是低技术含量低附加值的资源性石墨产品,如中低档的高碳石墨、高纯石墨、微粉石墨、球状石墨及可膨胀石墨等产品。鳞片天然石墨近两年价格低至3000元/吨。而进口常常是高技术含量高附加值的石墨深加工产品,如美日德法生产的柔性石墨,特别是日本生产的核能级的超低硫(S<500pm)及高纯(S<50pm)柔性产品,这些产品进口价高达10万-20万元/吨,一些氟化石墨产品,更是高达30万-50万元/吨。
2、低价出口高价进口。出口往往低于国际市场价格水平,而进口却高于国际贸易市场价格,进出口贸易价格长期与世界贸易价格水平有较大差距。出口价格通常只有国际价格的70%,主要原因是国有石墨企业的改制及民营企业进入石墨生产领域,资源缺乏统一管理,盲目扩建,造成石墨市场严重共过于求,生产厂家之间无序竟争,竟相削价。
我国石墨的主要消费结构及消费总量走势
近年来,随着我国经济结构调整,石墨逐渐转向新能源新材料领域的应用趋势明显,包括导电材料(锂电池、燃料电池等)、油品添加剂及氟石墨等其他领域的消费量将大幅度增加,预计2020年这一比例将超过25%。
在电池领域人造石墨具有比天然石墨更优异的性能,但是价格也高。而天然石墨由于其优良的特性,也具有一定的不可替代性。例如,隐晶质石墨由于其本身的物理性质,是做各向同性石墨的最佳原料;在膨胀石墨方面,人造石墨无法取代晶质石墨。所以未来的经济发展中两种石墨都有自己不可取代的市场。
声明
1.本文内容由中国粉体网旗下粉享家团队打造,转载请注明出处!
2.请尊重、保护原创文章,谢绝任何其他账号直接复制原创文章!