选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

稳定剂

广义地讲,能增加溶液、胶体、固体、混合物的稳定性能化学物都叫稳定剂。它可以减慢反应,保持化学平衡,降低表面张力,防止光、热分解或氧化分解等作用。广义的化学稳定剂来源非常广泛,主要根据配方设计者的设计目的,可以灵活的使用任何化学物以达到产品品质稳定的目的. 

狭义地讲,主要是指保持高聚物塑料、橡胶、合成纤维等稳定,防止其分解、老化的试剂。

稳定剂基本信息

稳定剂使用方法

首先必须彻底清洁溶器,先注入适量的纯水,再加入HH972-2稳定剂,搅拌至完全混合澄清。具体操作条件如下:

浓  度: HH972-2稳定剂   20-30%

纯  水     70-80%

操作温度:室温—60℃

PH 值:   7-8

浸渍时间: 0.5-2分钟

干燥方法: 1、以离心方法干燥,然后放入运风烘炉硬化。

2、直接放入运风烘炉干燥。

干燥温度: 50-70℃

查看详情

稳定剂造价信息

  • 市场价
  • 信息价
  • 询价

稳定剂

  • 品种:稳定剂;规格型号:MY.107.10;
  • t
  • 喜跃发
  • 13%
  • 喜跃发国际环保新材料股份有限公司
  • 2022-12-06
查看价格

稳定剂

  • 品种:稳定剂;规格型号:MY.107.10;
  • t
  • 喜跃发
  • 13%
  • 山西喜跃发道路建设养护有限公司
  • 2022-12-06
查看价格

稳定剂

  • 25kg系列名称:塑料橡胶助 包装:25 产地:重庆
  • kg
  • 13%
  • 贵州金辉煌化工有限公司
  • 2022-12-06
查看价格

PVC复合稳定剂

  • 熊牌318各型 精细及特种化学品
  • t
  • 13%
  • 成都中石化化工物资贸易有限公司
  • 2022-12-06
查看价格

复合稳定剂

  • TK-228给水管型/精细及特种化学品
  • t
  • 13%
  • 重庆太岳科技有限公司
  • 2022-12-06
查看价格

减水

  • FDN高效
  • kg
  • 湛江市2022年3季度信息价
  • 建筑工程
查看价格

膨胀

  • HEA型
  • kg
  • 茂名市电白市2022年9月信息价
  • 建筑工程
查看价格

膨胀

  • HEA型
  • kg
  • 茂名市高州市2022年9月信息价
  • 建筑工程
查看价格

膨胀

  • HEA型
  • kg
  • 茂名市化州市2022年8月信息价
  • 建筑工程
查看价格

膨胀

  • HEA型
  • kg
  • 茂名市电白市2022年7月信息价
  • 建筑工程
查看价格

纤维稳定剂

  • 纤维稳定剂
  • 500T中铁二局
  • 1
  • 含税费 | 含运费
  • 2011-08-11
查看价格

纤维稳定剂

  • 纤维稳定剂
  • 10.3t
  • 1
  • 含税费 | 含运费
  • 2011-05-09
查看价格

纤维稳定剂

  • 纤维稳定剂
  • 5t
  • 1
  • 中档
  • 不含税费 | 不含运费
  • 2017-04-12
查看价格

纤维稳定剂

  • 纤维稳定剂
  • 4000kg
  • 1
  • 中档
  • 含税费 | 含运费
  • 2016-09-26
查看价格

纤维稳定剂

  • 纤维稳定剂
  • 35000kg
  • 1
  • 不含税费 | 不含运费
  • 2010-08-20
查看价格

稳定剂注意事项

1、HH972-2稳定剂工作液的PH值的维护十分重要,PH<6或>9时,有效成份会自然析出成为微粒,外观质感会下降,起彩,所以前工序必须清洁彻底,再浸泡工作液,防止酸性或碱性成份带入工作液,以延长稳定剂的使用寿命。

2、工作液加温必须使用夹套加温(水浴加温),不能直接放加热棒入工作液中,以防工作液分解。温度较高可帮助有效成份渗透入镀层,增加外观质感。

3、工作液因PH值偏低出现浑浊或沉淀,可以将沉淀出来的有效成份过滤出来,用氨水调节PH至8,加入10%的正丁醇帮助有效成份溶解后,加入适量的纯水后可循环使用。但注意工作液经上述过程再生后,外观质感会有所降低。如果达不到外观要求,请更换新液。

查看详情

稳定剂简介

工业上常用的热稳定剂主要包括铅盐、金属皂、有机锡、有机锑、有机稀土、纯有机化合物等。据估计,我国目前有热稳定剂生产能力7万ta/,2000年消费量约为8万t/a。我国铅盐的发展重点是消除粉尘污染,目前已经采取相关措施;有机锡在我国市场消费比例偏低;由于高性能的辅助稳定剂推广工作不力,市场上还缺乏性价比较优的复合金属皂体系;稀土稳定剂是我国热稳定剂发展中的一支生力军。全球热稳定剂的消费已经超过30万t/a,美国代表着世界热稳定剂发展的最新水平,在无铅化方面走在世界的前列;日本的热稳定剂产量约6万一7万t/a,仍以铅盐类为主;西欧热稳定剂消费量约11万t/a。

查看详情

稳定剂常见问题

查看详情

稳定剂特点及应用

​在实际配合中,除了要求稳定剂满足热稳定性需要以外,往往还要求其具有优良的加工性、耐候性、初期着色性、光稳定性,对其气味、粘性也有严格要求,同时,聚氯乙烯制品也是千变万化的,包括管材、片材、吹塑件、注塑件、泡沫制品、糊树脂等,因此,聚氯乙烯加工时热稳定剂的选择非常重要,加工配方大多需要加工厂家自行开发。

1.1有机锡

(1)卓越的透明性有机锡稳定剂最大的优点是具有卓越的透明性,使用有机锡稳定剂的PVC配方,可得到结晶般的制品。正因为如此,有机锡可用于瓶子、容器、波纹板、各种类型的硬质包装容器、软管、型材、薄膜等。

(2)超凡的热稳定性在热稳定性方面目前还没有任何其它类型的热稳定剂能超过它。因此,它是硬质PVC首选的稳定剂,某些品种在软质制品中性能也较好。适用于所有的PVC均聚物,如乳液、悬浮和本体PVC,以及氯乙烯的共聚物、接枝聚合物和共混聚合物。

(3)产品无毒大多数有机锡稳定剂是无毒的,加之有机锡稳定剂在硬质PVC中的迁移极微,因此,有机锡稳定剂是接触食品用PVC首选的热稳定剂。

(4)良好的相容性有机锡稳定剂与PVC相容性良好,因此一般不会出现象铅盐稳定剂、金属皂稳定剂体系所常见的在金属表面沉析的现象。

(5)润滑性差含硫的锡类稳定剂自润滑性稍差,因此,许多市售的含硫有机锡都配合有润滑剂,以防止加工时热熔体粘附在加工设备上。

(6)成本昂贵同其它类型的稳定剂相比,有机锡稳定剂的综合性能更接近理想中的稳定剂。但所有有机锡稳定剂,不管结构如何,主要缺点是制造成本比铅类稳定剂或金属皂类复合物高得多。近年来,通过采用新的合成技术,或者降低其在配方中的使用量,已使其配方成本有所下降。70年代,国外开发了低价锡产品,降低了锡含量,也从一定程度上使价格得以降低。

1.2铅盐

(1)l稳定性优良实验证明,在常用的盐基性铅盐中,亚硫酸盐的耐热性优于硫酸盐,而硫酸盐的耐热性优于亚磷酸盐。PVC行业中应用极广的三盐基硫酸铅的有效铅含量较高,比其它产品表现出更为出色的热稳定性。

(2)绝缘性优良由于铅盐是非离子的,且不导电,因而是惰性的,这使得铅盐类稳定剂在电线、电缆行业有着广泛用途。

(3)耐候性优良许多盐类化合物能起到白色颜料的作用,能够表现出很强的覆盖力,因而具有较强的耐候性。

(4)透明性差透明性是与耐候性相互关联的问题,在电线、电缆及唱片材料方面使用,不必关心透明性问题,因为这些产品大多为白色或很深的暗黑色。

(5)价格低廉铅盐稳定剂是所有稳定剂品种中价格最低的,因此,尽管新型稳定剂不断推出,半个世纪之后铅盐稳定剂仍占据着稳定剂的主导市场。为解决粉尘和分散问题而推出的复合铅盐在价格上有所提高,但仍然保持着与其它类型稳定剂的竞争优势。

(6)有毒铅盐稳定剂的毒性限制了它在许多卫生要求严格的场合中应用。比如许多国家都已经修订了饮用水中铅含量标准,在PVC上水管中使用铅盐已不可能。

(7)分散性差盐铅的分散性较差,但新推出的一包装产品中配合了润滑剂,从一定程度上解决了分散性问题。正因为铅盐稳定剂具有以上特点,特别适用于高温加工,广泛用于各种不透明硬、软制品以及电缆料中,如各类管材、板材、室内外异型材、泡沫塑料、人造革以及电线、电缆、唱片、焊条等。最重要的铅盐稳定剂是三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅等。

1.3有机锑

(1)稳定性较好在相同温度下有机锑稳定剂具有与有机锡基本一样的色泽稳定性和较低的熔融粘度,在双螺杆挤出工艺中,与硬脂酸钙并用时效果尤为突出。

(2)价格较低有机锑稳定剂比甲基锡或丁基锡都低得多。除此之外,有机锑使用量较低,因此使用有机锑可获得较好的性能/价格平衡。

(3)产品无毒在美国,用双螺杆挤出机来制造PVC管时,采用锑系稳定剂和硬脂酸钙及其他润滑剂组成的配方制造的PVC上水管符合美国NSF(National Sanitation Foundation)规定。

(4)透明性和光稳定性差有机锑化合物的透明性不如有机锡稳定剂,也低于钡/福和钙/锌金属皂体系,与铅盐类接近,光稳定性也较差,因此锑稳定剂多用于室内无颜色要求的制品。锑稳定剂本身也要求贮存于不透明的容器内。

(5)润滑性差锑类稳定剂润滑性较差,因此,它的使用无一例外地要配合大量的润滑剂。

1.4金属皂

(1)锡皂稳定剂福皂是金属皂中性能最佳的一类,其优点还体现在无初期着色,可制得无色透明产品;优良的光稳定性;有防止析出粘附的效果。但因锡盐有毒,在劳动安全卫生法中对其制造和使用都有严格的规定。近年来,福皂的使用呈下降的趋势。

(2)锌皂稳定剂锌类稳定剂对PVC的热稳定性极差,添加锌皂的样片加热时急剧变黑,即产生所谓“锌烧(Zine burning)”现象,但其具有如下优点:初期着色性优良;防止积垢效果好;可提高耐候性;许多锌皂被认可为无毒稳定剂,所以与钙皂可并用于无毒配方。

(3)钡皂稳定剂钡类化合物热稳定性好,并且具有良好的润滑性,但加工时产生红色初期着色,还容易引起粘辊现象。

(4)钙皂稳定剂稳定性差,但世界各国公认其为无毒添加剂,具有优良的润滑性。

(5)其它金属皂稳定剂工业上使用的金属皂还有硬脂酸镁、硬脂酸锉、硬脂酸铝、硬脂酸钾等,其中硬脂酸镁与硬脂酸钙相似,可用于接触食品的材料;硬脂酸铝与硬脂酸锌相似,美国FDA和日本氯乙烯食品卫生协会准许用于食品包装;硬脂酸锉、硬脂酸钾也为无毒产品,属于铅盐、锡皂和钡皂的替代品。

(6)复合金属皂稳定剂加工行业对稳定剂的性能要求是多方面的,而单一的金属皂往往满足不了使用要求,因此复合稳定剂的使用已成为一种趋势。PVC工业中极少使用单一的金属皂化合物,而通常是几种金属皂的复合物。这种复合物不是性能的简单加合,而是利用了组分之间的协同作用。复合金属皂稳定剂中一般包括稳定剂主体(即金属皂)、溶剂(有机溶剂、增塑剂、液态非金属稳定剂等)、功能助剂(辅助稳定剂、透明改良剂、光稳定剂、润滑剂等)。根据形态分为固体复合物和液体复合物,根据主成分可分为钙/锌复合稳定剂、钡/福复合稳定剂、钡/锌复合稳定剂等。其中钙/锌复合稳定剂因为无毒,在取代有毒金属方面具有举足轻重的作用。

1.5稀土稳定剂

(1)优异的热稳定性稀土稳定剂的热稳定性优于传统铅盐系及钡/锌、钡/镐/锌类稳定剂。在某些应用中,稀土稳定剂可部分或全部替代有机锡。

(2)透明性好稀土稳定剂的折光率与PVC树脂非常接近,可替代传统使用的有机锡,用于较高透明性要求的制品领域。

(3)优良的耐候性能稀土元素可吸收230-320nm的紫外光,因此,稀土稳定剂具有抗光老化作用,适合于PVC波纹板、窗材等户外制品。

(4)优异的电绝缘性能某些稀土多功能稳定剂可用于取代铅盐系稳定剂用于电缆料配方,其电绝缘性能可与铅盐媲美。

(5)无毒、安全卫生稀土元素为低毒元素,在其生产加工、运输贮存中对人体均无毒性危害。稀土稳定剂为无毒产品,可用于食品包装和医药包装制品。

(6)加工性能稍差稀土稳定剂用量较大的情况下,物料的离辊性不理想,有压析倾向。一般通过配合使用硬脂酸或硬脂酸钙可达到较好的效果。

综上所述,稀土稳定剂可用于上下水管、注塑管件、窗框异型材、门板壁板、电线槽管、发泡制品、人造革、电缆料、软硬透明制品、食品包装材料等。

1.6辅助稳定剂辅助稳定剂包括亚磷酸醋、环氧大豆油、受阻酚等,主要依靠与金属稳定剂之间的协同效应提高稳定效果,一般称作共稳定剂。而介氨基巴豆酸醋、2一苯基叫噪、脉类衍生物、吞一二酮等化合物除了可与金属稳定剂并用而改善金属稳定剂的效果以外,自身也具有一定的稳定效能,这类化合物通常称作纯有机稳定剂。PVC稳定剂发展至今天,金属稳定剂的进展相对缓慢,而辅助稳定剂的研究与开发空前活跃,已构成PvC稳定剂领域的一大潮流。辅助稳定剂极少单独使用,常与主稳定剂配合使用,改善初期着色,或者改善长期稳定性能。

查看详情

热稳定剂的发展

全球性的环境保护要求日益严格,人类对赖以生存的环境净化要求日益强烈,限制重金属热稳定剂使用的法规压力日益加剧,使得热稳定剂的开发、生产向无毒、高效、多功能化方向发展的步伐加快。无锡、低铅、低尘化以及替代铅盐已成为全世界热稳定剂品种开发的重点。作为稳定剂的全新化学物质推出相对较少,而复合稳定剂铺天盖地。

各类稳定剂的发展呈现如下趋势。

(1)铅盐无尘是最基本的要求,低铅是环境所迫。鉴于铅盐在管材、绝缘材料方面的卓越表现,无铅化在世界范围内进程缓慢,铅盐真正退出历史舞台需要新的性能价格比优良的无铅产品出现,需要环保法规的强化,也需要时间。

(2)有机锡性能优良的甲基锡产品得到了很大发展,尤其是在中国。我国已拥有多项甲基锡方面的专利,近年来深圳泛胜、湖北南星在甲基锡的生产、推广方面都做了卓有成效的努力。泛胜公司从原料锡出发,采用自己的专利技术,掌握了年产6000t甲基锡生产技术关键,并开发出新的逆酷型有机锡化合物,标志着我国有机锡的生产已达到较高的水平。目前,大力发展我国的有机锡稳定剂,使热稳定剂结构更趋合理,已无技术方面的障碍,而需要的是政策和法规的引导。

(3)金属皂无毒类钙/锌稳定剂具有极广阔的发展空间,国外已在大管径管材、绝缘领域使用钙/锌稳定剂。但国内对复合金属皂开发不够重视,高性能的辅助稳定剂品种缺乏,与国外相比,反差较大。高性能复合金属皂的开发依赖于高性能的辅助稳定剂。

(4)稀土稳定剂是属于中国特色的热稳定剂,发展势头强劲。目前国内已有10余个厂家和科研单位涉及稀土稳定剂开发,包头等地厂家抓住我国对西部实施大开发的机遇,计划建设大规模的稀土稳定剂基地。但是,目前推出的稀土稳定剂大多是稀土与铅盐的复合物,仅能作为低铅化的一种过渡产品。稀土稳定剂的广泛使用还需要较好解决其润滑性和加工性不足的问题。

(5)纯有机化合物纯有机稳定剂作为金属稳定剂的替代物受到重视。Ciba精化、Morton等公司相继推出了以胺基嚓吮二酮为代表的纯有机化合物品种,同金属稳定剂相比,纯有机产品属于环境友好产品,有望在取代有毒重金属稳定剂方面发挥巨大的作用。

(6)其它产品近年作为热稳定剂使用的新的化合物包括水滑石系列、高氯酸盐等。汽巴嘉基公司将高氯酸及其盐与环氧化合物、抗氧剂并用于PVC中,获得了卓越的抗热及抗色变性能;日本共同药品推出的水滑石系列是镁/铝复合物,与脂肪酸锌并用于PVC,可防止配合料着色;德国南方化学公司建成了年产5000t水滑石的生产装置,并拥有专利技术。作为一种对环境完全无害的添加剂,水滑石有着广阔的应用前景。

查看详情

稳定剂文献

PVC稳定剂简介 PVC稳定剂简介

PVC稳定剂简介

格式:pdf

大小:12KB

页数: 5页

PVC 稳定剂简介 英文化工术语 :Stabilizer, Inhibiter 、 什么就是稳定剂? 1、广义地讲 ,能增加溶液、胶体、固体、混合物得稳定性能化学物都叫稳定剂。 它可以减慢反应 ,保持化学平衡 ,降低表面张力 ,防止光、热分解或氧化分解等作用。广 义得化学稳定剂来源非常广泛 ,主要根据配方设计者得设计目得 ,可以灵活得使用任何 化学物以达到产品品质稳定得目得、 2、狭义地讲 ,主要就是指保持高聚物塑料、橡胶、合成纤维等稳定 ,防止其分解、 老化得试剂。 纯得 PVC 树脂对热极为敏感,当加热温度达到 90Y :以上时,就会发生轻微得 热分解反应,当温度升到 120C 后分解反应加剧,在 150C ,10 分钟, PVC 树脂就由 原来得白色逐步变为黄色 —红色 —棕色 —黑色。 PVC 树脂分解过程就是由于脱 HCL 反应引起得一系列连锁反应,最后导致大分子链断裂。防止 P

焊丝镀铜稳定剂 焊丝镀铜稳定剂

焊丝镀铜稳定剂

格式:pdf

大小:12KB

页数: 1页

Dw-035 焊丝高速镀铜稳定剂(焊丝镀铜添加剂) 使用说明 (—)简述: Dw-035 焊丝 高速镀铜稳定剂是专门为二氧化碳气体保护焊丝,埋弧焊丝镀铜所研发的专业产品,本产 品采用进口原料化学合成的高分子化合物,在酸性化学镀铜液中添加少量稳定剂,即可提高镀铜层结合力 和光亮度,是镀层紧密、光亮、色泽一致,本品易溶于水、无异味、无毒、无环境污染。 (二)使用方法: 1.化镀槽镀液中 Dw-035 焊丝稳定剂的添加: ?推荐配方(按质量百分比计算) 电镀级硫酸铜( CuSO4.5H20)80—100克/升 试剂级硫酸( H2SO4)80—100 克/升 化镀槽中 Dw-035 焊丝镀铜稳定剂加入量: 冬天加入为镀液总重量的 10ml/l 至 15ml/l。 夏天温度高时应加入镀液总重量 15ml/l 至 25ml/l。 ?在镀液配制过程中,硫酸铜与硫酸配制稀释后,在倒入称量好的 D

稳定剂配方|2017年热稳定剂成分检测

稳定剂配方|2017年热稳定剂成分检测

非铅盐热稳定剂,PVC热稳定剂,钙锌复合稳定剂,硬脂酸盐热稳定剂配方化学成分分析。

PVC稳定剂主要有无机物或有机金属化合物,而热稳定剂是塑料加工助剂中重要类别之一,热稳定剂与PVC树脂的诞生和发展同步,主要用于PVC树脂加工中,因此热稳定剂与PVC树脂、PVC中软硬制品的比例有密切关系。飞秒检测技术依托浙江大学提供稳定剂配方检测、热稳定剂成分检测、配方分析、配方还原、工艺开发服务!

传统的PVC热稳定剂有:铅盐类热稳定剂、有机锡类热稳定剂、有机锑类热稳定剂和金属皂类热稳定剂。

PVC稳定剂主要有无机物或有机金属化合物,无机物和金属有机化合物是基本的(或主要的)稳定剂,而有机物则是次要的或辅助的稳定剂。稳定剂协同的混合物很普遍,通常包括各种流基有机锡化合物和波基盐(化合物)以及辅助的添加剂,如锌皂,亚磷酸盐,环氧化物,甘油酯,紫外线吸收剂,抗氧剂等。显然,大多数协同组合物具有专用性,因此还没有发现它们具有全面的共性。

热稳定剂配方作用机理

1、吸收树脂热降解过程中生成的HCI,抑制其自动催化降解作用。

2、置换PVC分子中不稳定的烯丙基氯原子或叔碳氯原子,消除引发降解位点作用。

3、与多烯结构发生加成反应,防止大共轭体系的形成,减少着色。

4、捕捉自由基,阻止氧化反应和连锁反应。

飞秒检测——热稳定剂配方剖析机构

飞秒检测分析过的稳定剂有:铅盐复合稳定剂、OBS有机基稳定剂 、有机锡类稳定剂、液体复合稳定剂 、钙锌复合稳定剂 、钡锌复合稳定剂和钾锌复合稳定剂等。

热稳定剂成分检测:帮助客户还原热稳定剂成分组成化学名称和含量比例;

稳定剂深度分析:有些有机类的样品比较难测试,这就需要购买标准品来定性定量检测出来,飞秒技术通过专业的标准品定性定量服务,可以帮助客户还原配方95%以上。

查看详情

热稳定剂影响

(1)稳定剂的折射率

热稳定剂与PVC树脂的可见光折射率1.52~1.55相同或近似,则PVC制品透明度就较好,反之则透明度就较低。

(2)稳定剂分子(分子团)的线性长度:热稳定剂分子(或分子团)线性长度小于可见光波长400~735nm折射光较少,透明度较高,反之透明度较低。

(3)热稳定剂在PVC中的“溶解度”,即相容性:所谓相容性系指两种或多种物质混合时的相互亲和力。相容性好即有可能达到分子级分散。热稳定剂在熔融状态下与PVC树脂相容性好。形不成两相,也就是没界面或界面不明显,折射光较少,PVC制品的透明度较高。液体稳定剂比相应的固体金属皂在PVC中相容性好,分子线性长度亦较小,因而PVC的透明度较高。

液体有机锡热稳定剂透明度最好,这是因为无论是未参加热稳定化反应的热稳定剂本身,还是已参加稳定化反应后生成的R2SnCl2在PVC树脂中均有很好的相容性。而Ba/Zn、Ba/Cd、Ca/Zn的硬脂酸皂在PVC中有一定的相容性,透光率亦比较高,但因其相容性有限,分子线性长又较大,参加热稳定化后的生成物是典型的金属盐类如CaCl2、BaCl2等,与PVC的相容性较差,因而用量大时因有较多折射光,影响其透光率而变混浊。

相容性极差的三碱式硫酸铅、二碱式亚磷酸铅,分子团又比较大,因而PVC制品不透明。

而硬脂酸铅因有一定的相容性,用量少时则为半透明。

查看详情

热稳定剂种类

PVC稳定剂通常是无机物或有机金属化合物,这一术语本身就表明含有阳离子,或有机化合物,通常按化学类别进行分类。通常,无机物和金属有机化合物是基本的(或主要的)稳定剂,而有机物则是次要的或辅助的稳定剂。

稳定剂主要根据锡、铅以及血A族金属的混合物如钡、铜、锌进行分类。

稳定剂协同的混合物很普遍,通常包括各种流基有机锡化合物和波基盐(化合物)以及辅助的添加剂,如锌皂,亚磷酸盐,环氧化物,甘油酯,紫外线吸收剂,抗氧剂等。显然,大多数协同组合物具有专用性,因此还没有发现它们具有全面的共性。

有机锡稳定剂分为含硫和不含硫两类。含硫稳定剂在所有稳定性能方面都是杰出的,但存在与含硫化合物类似的味道和交叉站污的问题。典型的含硫阴离子是:巯基化物——SR、巯基酸酯——S(CH)nCOOR、巯基酸酯——S(CH)nOCO、或元素硫。

非硫阴离子通常是基于马来酸或马来酸半酯,非硫有机锡是效果较小的热稳定剂,但是却具有较好的光稳定性。

铅稳定剂:典型的铅稳定剂包括下列化合物:二盐基硬脂酸铅、水合三盐基硫酸铅、二盐基邻苯二甲酸铅、二盐基亚磷酸铅。

在作为热稳定剂的同时,铅化合物不损害PVC材料的优良的电性能、低吸水性和室外耐候性。但是,铅稳定剂有缺点,如有毒;会交叉污染,特别是和硫交叉污染;生成氯化铅,在制成品上形成条纹;比重大,导致不尽人意的重量/体积比。铅稳定剂常常立刻使PVC制品变得不透明,并且在持续受热后很快变色。

尽管有毒害和生态方面的缺陷,这些稳定剂仍得到了广泛的应用。对电绝缘性,铅是首选的PVC稳定剂。基于这种稳定剂的综合效果,有许多柔性的和刚性的、均聚物和共聚物配方才得以实现。

混合金属稳定剂:混合金属稳定剂是各种化合物的聚集体,通常根据具体的PVC用途和用户来设计。这类稳定剂已经由单独添加琥珀酸钡和棕桐酸镉发展到将钡皂、镉皂、锌皂、有机亚磷酸酯,再加上抗氧剂、溶剂、增量剂、塑解剂、着色剂、紫外吸收剂、光亮剂、粘度控制剂、润滑剂、增粘剂,以及人工香料等进行物理混合。这样,就有相当多的因素能影响最终稳定剂的效果。

ⅡA族金属稳定剂,如钡、钙、镁并不保护早期的颜色,但能为PVC提供良好的长期热稳定剂。以这种方式稳定的PVC起始是黄/橙色,然后持续受热,逐渐变成检/棕色,最后变黑。

镉和锌化合物首先被用作稳定剂是由于它们透明,并能保持PVC制品的原来颜色。由镉和锌提供的长期热稳定性远小于钡化合物。它们往往会在极小先兆或毫无先兆的情况下,突然发生完全降解。

除了与金属比例有关外,钡一钢稳定剂的效果还与其阴离子有关。稳定剂阴离子是影响下列性能的主要因素:润滑性、迁移性、透明性、颜料颜色的变化,以及PVC的热稳定性等。下面是几种常见的混合金属稳定剂的阴离子:2-乙基己酸盐、酚盐、苯甲酸盐、硬脂酸盐。

随着加工技术的革新和使用的必要性,钙一锌稳定剂有所发展。起初,所有PVC食品包装都依赖于政府批准的钙皂、锌皂。为了满足消费者的需要和开发市场潜力,设计了使用这种不太有效的稳定剂的PVC配方和熔体制造设备。辅助稳定剂可与这些皂一起使用。二氢吡啶和二酮是最新的辅助添加剂。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639