选择特殊符号
选择搜索类型
请输入搜索
蜗壳压差法虽然简单,但在实际测试过程中(尤其是在在线监测中)也暴露出了几个问题:
1.压力的稳定
这就需要在试验前专门制作2个稳压筒,费时费力;而且该稳压筒还占一定的位置,这对有些水机层空间本来就比较狭窄的电厂来讲,在布置上就有困难。
2.排气
蜗壳压差法使用的关键设备是差压变送器,而差压变送器在使用过程中其管道里是不能有空气的。如果仅仅是做流量或效率测量试验,就需在每次试验之前进行排气;而如果是进行机组流量或效率的在线检测,则会给运行人员增添不少工作。尤其是水电厂因其本身的特性所决定,经常进行工况的转换,开机、停机较为频繁。每次停机后(尤其是在检修后) ,测压管道中就会混有空气或泥渣,如果不排气,则检测数据的误差是相当大的。现在国内有不少水电厂的运行实现了计算机监控,基本上是无人值班(少人值守) ,如果其流量或效率检测装置还经常需要人工来维护,这显然是不合适的。据我们所了解,国内许多水电厂安装有流量或效率测量装置,如采用的是蜗壳压差法,则这套系统大都没有正常地投入运行 。
1.稳定压力
从以下2个途径来解决这个问题:
(1) 设计1个专用的阻尼器(取代稳压筒)。这是压力稳定的关键。利用节流稳压的机理,直接在差压变送器的高、低压侧进水管路上增设2个专用的阻尼器 (具体尺寸依实际测试条件而定)。
(2) 软件滤波。采用在一段时间内,多次采样,取平均值,遇到突变值则复位重来。
2.自动排气
蜗壳差压变送器在测试过程中,其取压管道中是不能混入空气的,结合水电机组的运行机制,设计了一种自动排气装置,一旦监控系统(继电器) 发出开机令,即通过2组电磁阀分别打开差压变送器的高、低压侧的排气阀,排出的水通过专用的管道,流入集水井,一般排气20~30min后,自动关闭排气阀。自动排气后,应注意差压变送器测量系统的率定校准,以便保证差压值的精度。
如何评价水轮机的能量特性,长期以来一直是水机界的一项重要研究工作,在已运行的机组中,有的由于设计选型不合理或在制造安装中存在着缺陷和遗留问题,使得水轮机的效率不高。特别是有的机组由于长期处在低效率区或在低水头下运行,严重影响着机组效率的发挥,同时还造成严重的振动和空蚀破坏。因此需要摸清现有机组在运行中的实际效率状况,探讨和解决运行工况对水轮机效率的影响。为了充分利用水利资源,提高水力发电厂的经济效益,实现水力机组及整个电网的经济运行,需要在水电厂现场进行水力机组的效率试验,实测出水力机组及整个水电厂的能量特性,使得各个水电厂效率试验的成果成为整个电网优化运行的可靠技术依据,并指导水电厂的经济运行。
适用于现场测试的方法有很多,其中则以流速仪法、蜗壳压差法、超声波法最为常用,而流速仪法需要停机后在流道中安装流速仪,试验工作量相当大;超声波法也受一定的安装条件的限制,且一套测试装置价格昂贵;唯有蜗壳压差法最为简单可行,这是最为常用的一种流量测量方法。如果某机组通过其它方法得出了其蜗壳流量系数值,则利用蜗壳压差法可以很方便地计算出其过机流量,从而计算出其效率和耗水率;即便是不知其蜗壳流量系数值,也可以利用蜗壳压差法很方便地得出其过机相对流量,相对效率,尤其是对轴流转浆式机组而言,可以进行协联关系的调整,使机组处于最佳运行状态,达到安全、经济运行 。
驱动机(电机)通过泵轴带动叶轮旋转,叶轮的叶片驱使液体一起旋转,因而产生离心力,在此离心力的作用下,液体沿叶片流道被甩向叶轮出口,液体经蜗壳收集送入排出管。液体从叶轮获得能量,使压力能和速度能均增加...
在厂房混凝土工程量计算中,要扣除蜗壳空腔的体积,因此蜗壳空腔的体积计算方法和计算精度直接影响混凝土的工程量。蜗壳形状是一个非常复杂的三维变截面空间几何图形,在计算该种图形的工程量时,将蜗壳空腔体积分解...
1 、大约5t左右的 卧式蜗壳双吸离心泵安装应该套《机械设备安装工程》册中‘多级离心泵安装6t以内’的定额子目。 2、大约8t左右的电动机安装应该套《机械设备安装工程》册中的‘电动机安装’的10t...
1.测流原理
具有一定流速的水流流经蜗壳时,由于蜗壳中心线弯曲,水流在弯曲流道上产生离心力,使得蜗壳内、外缘2点产生压力差,该压力差的大小与水流流速有关。对于截面积已成为定值的蜗壳某截面来说,平均流速大小正比于流经该截面的流量,因此蜗壳内、外缘的压力差(差压值) 就可以反映流过水轮机的流量相对值。
流量与蜗壳差压的算术平方根成正比。对于不同的机组蜗壳或同一蜗壳不同的测压孔而言,蜗壳流量系数是不同的常数。对于同1台机组同2根测压管,只要取压状态不改变,可以用差压变送器测取。
2.测压断面及测压孔的选取
差压测取首先必须使高压取压孔中心与几个低压孔中心在同一测压断面内,这个测压断面是过水轮机中心的蜗壳横截面;其次,是该横截面应选在蜗壳水流发生旋转的地方。
3.稳压措施
因被测压力一般都有波动,得到准确的读数比较困难,为减少或消除这种波动的稳压措施就是在传递压力系统上增加阻尼。对这种阻尼的要求是对称的线性阻尼。
最常见的稳压措施有:
(1) 节流稳压
稳压设备常常利用现有的阀门,即用测压管路上或差压计上的阀门,通过关小阀门形成节流来达到稳压的效果。用这种方法进行稳压时,要求适当控制节流的程度,往往不易准确掌握,在实际测试中应用较少;
(2) 专用的稳压装置(稳压筒)
用稳压筒进行稳压可以达到良好的效果,但需要正确设计稳压筒。稳压筒也分2种,即节流式稳压筒及空气阻尼式稳压筒。实际测试中常用的是空气阻尼式稳压筒,即利用筒内一段压缩空气的弹性产生阻尼将压力的波动化解,测得的是平均压力。实用结果表明,其稳压效果较好。
针对提出的问题以及解决问题的途径,2001年2月对湖北省黄龙滩水力发电厂2号机组计算机监控系统中的流量效率监测部分进行了初步的改造,并达到了预想的效果:蜗壳压差的波动大大减小,差压变送器的排气已完全自动化,不需人工干预 。2100433B
水电站蜗壳曲面造型与展开误差分析
蜗壳是水电站的重要部件之一,本文以包络理论推导了蜗壳曲面方程;并采用分段圆弧构造椭圆的方法构造了变径椭球包络曲面,为蜗壳曲面的几何造型提出了一种新的简便方法。同时,采用内外环面法设计了蜗壳曲面展开的计算机绘图程序,并与常用的直纹面法作了误差比较。
单蜗壳离心泵壁厚的计算方法
详细阐述了4种不同的计算单蜗壳离心泵壁厚的方法,并结合实例进行计算与对比,从理论上阐述了各方法的异同,最后整合了壁厚计算公式,该公式融合了各公式的长处,计算结果较为可靠,可供工程设计人员参考,具有重要的工程应用价值。
蜗壳的整体结构设计主要考虑扩压机匣和蜗壳的连接与分开,蜗壳的焊接、加筋等。环形通道的扩压机匣与蜗壳祷用两个垂直法兰连接。扩压机匣一般铸造成型。蜗壳尺寸较大的,用薄钢板焊接成后,在各表面焊有加强筋。尺寸较小的蜗壳,采用冲压方式冲出凸出的槽做加强筋,不需另加焊筋了。有的小型机组的排气蜗壳,设计成弧形光滑面,加工工艺较复杂。
关于蜗壳排气方向的问题,设计时,对于轴向装配式蜗壳可考虑旋转角度装配的结构,将蜗壳和扩压机匣连接的两个垂直法兰螺孔数相对应,调整螺孔的装配位置就能改变蜗壳的出气方向了。对于水平中分式蜗壳,需按使用现场对方向的要求,确定上、下、左、右四个方向,蜗壳只需两种结构即可,上下通用,左右通用 。2100433B
排气蜗壳的设计应注意三点:
(1)应尽可能减少气体在蜗壳中的流动损失,使蜗壳的外形尺寸达到预定的扩压要求。
(2)蜗壳的结构应满足重量轻、刚性好。流过蜗壳的气流不会引起蜗壳钢板的振动。
(3)应满足燃机使用现场的排气方向要求,确定蜗壳排气口的方向,使之能方便地变换方向。
设计排气蜗壳时要考虑气动和工艺两方面的要求,尽量达到气体流动损失小、气流均匀,然后再考虑蜗壳的加工工艺性,力求工艺简单、形状不复杂、好加工。
因涡轮内、外气体的压差很小,对蜗壳的作用力也小,此类蜗壳可用薄钢板焊接。对于大中型燃机,排气蜗壳尺寸较大,常将其分为两个部分:安装在蜗壳内的扩压机匣和排气蜗壳。排气蜗壳不承力,尺寸较大,而扩压机匣承力,但尺寸较小,而且结构简单,一般铸造成形 。