选择特殊符号
选择搜索类型
请输入搜索
《无线传感器网络通信协议 》是 电子工业出版社出版的书籍。
第1章 无线传感器网络概述
1.1 引言
1.2 无线传感器网络介绍
1.2.1 无线传感器网络体系结构
1.2.2 无线传感器网络的特点和关键技术
1.2.3 无线传感器网络的应用
1.3 无线传感器网络路由算法
1.3.1 无线传感器网络路由算法研究的主要思路
1.3.2 无线传感器网络路由算法的分类
1.3.3 无线传感器网络QoS路由算法研究的基本思想
1.3.4 无线传感器网络QoS路由算法研究的分类
1.3.5 平面路由的主流算法
1.3.6 分簇路由的主流算法
1.4 ZigBee技术
1.4.1 ZigBee技术的特点
1.4.2 ZigBee协议框架
1.4.3 ZigBee的网络拓扑结构
1.5 无线传感器安全研究
1.5.1 无线传感器网络的安全需求
1.5.2 无线传感器网络安全的研究进展
1.5.3 无线传感器网络安全的研究方向
1.6 水下传感器网络
1.7 无线传感器网络定位
1.7.1 存在的问题
1.7.2 性能评价
1.7.3 基于测距的定位方法
1.7.4 非测距定位算法
1.7.5 移动节点定位
第2章 无线传感器网络的分布式能量有效非均匀成簇算法
2.1 引言
2.2 相关研究工作
2.2.1 单跳成簇算法
2.2.2 多跳成簇算法
2.3 DEEUC成簇路由算法
2.3.1 网络模型
2.3.2 DEEUC成簇算法
2.3.3 候选簇头的产生
2.3.4 估计平均能量
2.3.5 最终簇头的产生
2.3.6 平衡簇头区节点能量
2.3.7 算法分析
2.4 仿真和分析
2.5 结论及下一步工作
参考文献
第3章 无线传感器网络分簇多跳能量均衡路由算法
3.1 无线传输能量模型
3.2 无线传感器网络路由策略研究
3.2.1 平面路由
3.2.2 单跳分簇路由算法研究
3.2.3 多跳层次路由算法研究
3.3 LEACH-L算法
3.3.1 LEACH-L的改进思路
3.3.2 LEACH-L算法模型
3.3.3 LEACH-L描述
3.4 LEACH-L的分析
3.5 实验仿真
3.5.1 评价参数
3.5.2 仿真环境
3.5.3 仿真结果
3.6 总结及未来的工作
3.6.1 总结
3.6.2 未来的工作
参考文献
第4章 基于生成树的无线传感器网络分簇通信协议
4.1 引言
4.2 无线传输能量模型
4.3 基于时间延迟机制的分簇算法(CHTD)
4.3.1 CHTD的改进思路
4.3.2 CHTD簇头的产生
4.3.3 CHTD簇头数目的确定
4.3.4 CHTD最优簇半径
4.3.5 CHTD描述
4.3.6 CHTD的特性
4.4 CHTD簇数据传输研究
4.4.1 引言
4.4.2 改进的CHTD算法(CHTD-M)
4.4.3 CHTD-M的分析
4.5 仿真分析
4.5.1 生命周期
4.5.2 接收数据包量
4.5.3 能量消耗
4.5.4 负载均衡
4.6 总结及未来的工作
4.6.1 总结
4.6.2 未来的工作
参考文献
第5章 基于自适应蚁群系统的传感器网络QoS路由算法
5.1 引言
5.2 蚁群算法
5.3 APAS算法的信息素自适应机制
5.4 APAS算法的挥发系数自适应机制
5.5 APAS算法的QoS改进参数
5.6 APAS算法的信息素分发机制
5.7 APAS算法的定向广播机制
5.8 仿真实验及结果分析
5.8.1 仿真环境
5.8.2 仿真结果及分析
5.9 总结及未来的工作
5.9.1 总结
5.9.2 未来的工作
参考文献
第6章 无线传感器网络簇头选择算法
6.1 引言
6.2 LEACH NEW算法
6.2.1 网络模型
6.2.2 LEACH NEW簇头选择机制
6.2.3 簇的生成
6.2.4 簇头间多跳路径的建立
6.3 仿真实现
6.4 结论及未来的工作
参考文献
第7章 水下无线传感网络中基于向量的低延迟转发协议
7.1 引言
7.2 相关工作
7.3 网络模型
7.3.1 问题的数学描述
7.3.2 网络模型
7.4 基于向量的低延迟转发协议
7.4.1 基于向量转发协议的分析
7.4.2 基于向量的低延迟转发算法
7.5 仿真实验
7.5.1 仿真环境
7.5.2 仿真分析
7.6 总结
参考文献
第8章 无线传感器网络数据融合算法研究
8.1 引言
8.2 节能路由算法
8.2.1 平面式路由算法
8.2.2 层状式路由算法
8.3 数据融合模型
8.3.1 数据融合系统
8.3.2 LEACH簇头选择算法
8.3.3 簇内融合路径
8.3.4 环境设定和能耗公式
8.4 数据融合仿真
8.4.1 仿真分析
8.4.2 仿真结果分析
8.5 结论
参考文献
第9章 无线传感器网络相关技术
9.1 超宽带技术
9.1.1 系统结构的实现比较简单
9.1.2 空间传输容量大
9.1.3 多径分辨能力强
9.1.4 安全性高
9.1.5 定位精确
9.2 物联网技术
9.2.1 物联网原理
9.2.2 物联网的背景与前景
9.3 云计算技术
9.3.1 SaaS软件即服务
9.3.2 公用/效用计算
9.3.3 云计算领域的Web服务
9.4 认知无线电技术
9.4.1 传统的Ad-hoc方式中无线传感器网络的不足
9.4.2 在ZigBee无线传感器网络中的应用
参考文献
第10章 无线传感器网络应用
10.1 军事应用
10.2 农业应用
10.3 环保监测
10.4 建筑应用
10.5 医疗监护
10.6 工业应用
10.6.1 工业安全
10.6.2 先进制造
10.6.3 交通控制管理
10.6.4 仓储物流管理
10.7 空间、海洋探索
10.8 智能家居应用
《无线传感器网络通信协议》较为全面地介绍了无线传感器网络的关键技术,特别是无线传感器网络协议的设计及传感器网络数据融合等领域的核心技术,重点研究了无线传感器网络的路由协议、数据融合算法及水下路由通信算法。全书共分为10章,以全新的视野、翔实的资料,深刻阐述了无线传感器网络领域的一些新问题、解决问题的方案和工程应用开发的设计方法。《无线传感器网络通信协议》中大部分内容是作者近年来在本领域的研究成果,并提供了详细的参考文献。《无线传感器网络通信协议》共分为三部分:
第一部分是传感器网络基础内容,主要包括第1章,介绍传感器网络的体系结构、与其关系密切的无线短距离通信标准等。
第二部分是传感器网络协议及传感器网络通信算法研究,包括第2~8章,介绍具有能量效率的通信协议、具有QoS机制的通信协议、水下通信协议及数据融合技术等内容。
第三部分是传感器网络相关技术及其应用,包括第9、10章,介绍物联网、云计算及超宽带技术等,同时列举了一些较为典型的应用。
无线传感器是有接收器和。接收器上可以接多个传感器的。输送都是两三百米、频率是2.4GHz。如果需要传输更远的距离的话就需要跳频了。这样整个形式就是无线传感器的网络了。
基于XL.SN智能传感网络的无线传感器数据传输系统,可以实现对温度,压力,气体,温湿度,液位,流量,光照,降雨量,振动,转速等数据参数的实时,无线传输,无线监控与预警。在实际应用中,无线传感器数据传输...
这个....好难说哦,既然天线增益是有的,那么就存在了信号不规则的问题,那么有效通信距离要怎么规定,丢包率低于什么的时候才叫做有效通信半径....接收功率和你所说的通信距离肯定是有关系的。存在着一个功...
低功耗Zigbee无线传感器网络通信研究
西安工业大学北方信息工程学院 本科毕业设计 (论文 ) 题目 :低功耗 Zigbee 无线传 感器网络通信研究 系 (部): 光电信息系 专 业: 光电信息工程 班 级: B060106 学 生: 毋晓野 学 号: B06010621 指导教师: 吕 宏 2010年 05 月 i 低功耗 ZIGBEE无线传感器网络通信研究 摘 要 随着无线网络技术的快速发展和传感器技术的日益成熟, 无线传感器网络应运而 生。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成, 通过 无线通信方式形成的一个多跳的自组织的网络系统, 其目的是协作地感知、 采集和处 理网络覆盖区域中感知对象的信息, 发送给观察者。 近年来,无线传感器网络被广泛 的应用在预防医学、环境监测、森林灭火乃至车辆检测、行星探测等领域,成为国内 外广泛讨论的焦点。 IEEE802.15.4标准主要针对于低速无线个人区
无线传感器网络组网设计
无线传感器网络是一种集成了计算机技术、通信技术、传感器技术的新型智能监控网络。本文分析了Zig Bee无线传感器网络的结构,并研究了采用Zig Bee技术如何建立无线传感器网络,及实现终端节点和协调节点的通信。
《无线传感器网络实用教程》
第1篇 无线传感器网络概述
第1章 无线传感器网络简介
1.1 短距离无线网络概述
1.2 无线传感器网络发展历程
1.3 无线传感器网络的特征
1.4 传感器网络的关键技术
1.5 无线传感器网络的应用
1.6 无线传感器网络仿真平台
1.7 无线传感器网络开发平台
1.8 小结
参考文献
第2篇 无线传感器网络原理
第2章 无线传感器网络体系结构
2.1 体系结构概述
2.2 无线传感器网络体系结构
2.3 小结
参考文献
第3章 路由协议
3.1 概述
.3.2 路由协议分类
3.3 典型路由协议分析
3.4 小结
参考文献
第4章 mac协议
4.1 概述
4.2 wsn的mac协议分类
4.3 mac协议分析比较
4.4 小结
参考文献
第5章 拓扑控制
5.1 概述
5.2 拓扑控制设计目标与研究现状
5.3 拓扑模型与拓扑控制算法
5。4 小结
参考文献
第6章 wsn定位技术
6.1 定位技术简介
6.2 测距方法
6.3 常用的定位计算方法
6.4 典型wsn定位系统和算法
6.5 定位算法设计的注意问题
6.6 小结
参考文献
第7章 时间同步
7.1 时间同步概述
7.2 时间同步算法
7.3 算法比较分析
7.4 小结
参考文献
第8章 安全技术
8.1 无线传感器网络安全基本理论
8.2 无线传感器网络的安全技术研究
8.3 无线传感器网络安全协议
8.4 操作系统安全技术
8.5 无线传感器网络安全的研究进展
8.6 小结
参考文献
第9章 协议标准
9.1 标准概述与网络简介
9.2 1eee 802.15.4协议
9.3 zigbee协议标准
9.4 小结
参考文献
第3篇 zigbee实践开发技术--cc2430
第10章 zigbee硬件平台
10.1 zigbee无线soc片上系统cc2430/cc2431概述
10.2 cc2430/cc2431芯片主要特点
10.3 cc2430/cc2431芯片功能结构
10.4 soc无线cc2430之8051的cpu介绍
10.5 cc2410/cc2431主要外部设备
10.6 无线模块
10.7 cc2430/cc2431所涉及的无线通信技术
10.8 cc2431无线定位引擎介绍
10.9 基于cc2430/cc2431的zigbee硬件平台
第11章 cc2430开发环境iar
11.1 软件安装
11.2 zigbee精简协议
11.3 软件设置及程序下载
11.4 软件使用实例
11.5 取片内温度实例
第12章 开发实践--环境监测
12.1 系统总体方案
12.2 zigbee芯片选择
12.3 系统硬件研制
12.4 系统试验平台搭建
12.5 小结
参考文献
第4篇 zisbee实践开发技术--jennic
第13章 硬件平台
13.1 概述
13.2 硬件平台介绍
第14章 软件平台
14.1 软件介绍
14.2 软件安装
14.3 软件使用说明
14.4 实验平台功能演示
14.5 可视化工具软件isnamp-j
第15章 开发实践--基于zigbee协议栈进行开发
15.1 协议栈架构简介
15.2 zigbee协议栈的开发接el apl
15.3 应用框架接口函数
15.4 zigbee device profile apl
15.5 外围部件的操作
参考文献
第5篇 tinyos实践开发技术
第16章 nesc语言
16.1 nesc语言简介
16.2 语法与术语
16.3 接口
16.4 组件
16.5 模块
16.6 结构
16.7 nesc协作
16.8 应用程序
16.9 多样性
参考文献
第17章 tinyos操作系统
17.1 tinyos简介
17.2 tinyos框架结构与特点
17.3 tinyos组件
17.4 tinyos的系统模型
17.5 tinyos通信模型
17.6 tinyos事件驱动机制、调度策略
17.7 tinyos任务调度机制
17.8 tinyos硬软件实现
17.9 tinyos协议栈
17.10 tinyos应用示例
17.11 tinyos的安装
第18章 tinyos示例
18.1 tinyos示例--用事件驱动方式从传感器读取数据
18.2 crossbow-oem设计套件与网络操作
18.2 传感器节点配置
18.4 moteview操作示例
第1篇总论
第1章无线传感器网络概述
1.1无线传感器网络介绍1
1.1.1无线传感器网络的概念1
1.1.2无线传感器网络的特征2
1.1.3无线传感器网络的应用4
1.2无线传感器网络的体系结构7
1.2.1无线传感器网络的系统架构7
1.2.2传感器节点的结构7
1.2.3无线传感器网络的体系结构概述8
1.3无线传感器网络的研究进展10
1.3.1无线传感器网络的发展历程10
1.3.2无线传感器网络的关键技术14
1.3.3无线传感器网络所面临的挑战14
参考文献16
第2篇无线传感器网络的通信协议
第2章无线传感器网络的物理层
2.1无线传感器网络物理层概述19
2.1.1无线传感器网络物理层的研究内容19
2.1.2无线传感器网络物理层的研究现状20
2.1.3无线传感器网络物理层的主要技术挑战22
2.2无线传感器网络的调制与编码方法22
2.2.1Mary调制机制22
2.2.2差分脉冲位置调制机制23
2.2.3自适应编码位置调制机制24
2.3超宽带技术在无线传感器网络中的应用25
2.3.1超宽带技术概述25
2.3.2超宽带技术的基本原理26
2.3.3超宽带技术的研究现状29
2.3.4基于超宽带技术的无线传感器网络31
参考文献35
第3章无线传感器网络的数据链路层
3.1无线传感器网络数据链路层概述37
3.1.1无线传感器网络数据链路层的研究内容37
3.1.2无线传感器网络数据链路层的研究现状38
3.1.3无线传感器网络数据链路层的主要技术挑战39
3.2无线传感器网络的MAC协议40
3.2.1基于竞争机制的MAC协议40
3.2.2基于时分复用的MAC协议47
3.2.3其他类型的MAC协议54
参考文献58
第4章IEEE802.15.4标准
4.1IEEE802.15.4标准概述60
4.2IEEE802.15.4的物理层60
4.2.1物理层概述60
4.2.2物理层服务规范61
4.2.3物理层帧结构65
4.3IEEE802.15.4的MAC子层65
4.3.1MAC层概述65
4.3.2MAC层的服务规范66
4.3.3MAC帧结构69
4.3.4MAC层的功能描述70
4.4基于IEEE802.15.4标准的无线传感器网络70
4.4.1组网类型70
4.4.2数据传输机制71
参考文献72
第5章无线传感器网络的网络层
5.1无线传感器网络网络层概述73
5.1.1网络层的研究内容73
5.1.2网络层的研究现状74
5.1.3网络层的主要技术挑战75
5.2无线传感器网络的路由协议75
5.2.1以数据为中心的平面路由75
5.2.2网络分层路由77
5.2.3基于查询的路由79
5.2.4地理位置路由81
5.2.5能量感知路由84
5.2.6基于QoS的路由87
5.2.7路由协议的优化88
5.3无线传感器网络中的数据包转发策略90
5.3.1包转发策略的研究背景90
5.3.2基于价格机制的包转发博弈模型91
5.3.3自发合作的包转发博弈模型93
参考文献94
第6章无线传感器网络的传输层
6.1无线传感器网络传输层概述97
6.1.1无线传感器网络传输层的研究内容97
6.1.2无线传感器网络传输层的研究现状98
6.1.3无线传感器网络传输层的主要技术挑战99
6.2无线传感器网络的传输协议99
6.2.1PSFQ传输协议99
6.2.2ESRT传输协议101
6.3无线传感器网络与其他网络的互联103
6.3.1无线传感器网络与Internet互联103
6.3.2无线传感器网络接入到网格105
参考文献109
第7章ZigBee协议规范
7.1ZigBee概述111
7.1.1ZigBee与IEEE802.15.4111
7.1.2ZigBee协议框架112
7.1.3ZigBee的技术特点113
7.2网络层规范113
7.2.1网络层概述113
7.2.2服务规范114
7.2.3帧结构与命令帧115
7.2.4功能描述116
7.3应用层规范117
7.3.1应用层概述117
7.3.2ZigBee应用支持子层117
7.3.3ZigBee应用层框架结构118
7.3.4ZigBee设备协定(profile)119
7.3.5ZigBee目标设备(ZDO)119
7.4ZigBee系统的开发119
7.4.1开发条件和注意事项119
7.4.2软件开发120
7.4.3硬件开发121
7.5基于ZigBee规范的无线传感器网络122
7.5.1无线传感器的构建122
7.5.2无线传感器网络的构建123
7.5.3基于ZigBee的无线传感器网络与RFID技术的融合124
参考文献124
第3篇无线传感器网络的核心支撑技术
第8章无线传感器网络的拓扑控制
8.1无线传感器网络的拓扑控制技术概述125
8.1.1无线传感器网络拓扑控制的研究内容125
8.1.2无线传感器网络拓扑控制的研究现状126
8.1.3无线传感器网络拓扑控制的主要技术挑战126
8.2无线传感器网络的拓扑控制算法127
8.2.1功率控制算法127
8.2.2层次拓扑结构控制算法129
8.3无线传感器网络的密度控制135
8.3.1连通支配集构造算法135
8.3.2基于概率覆盖模型的无线传感器网络密度控制算法138
参考文献140
第9章无线传感器网络的节点定位
9.1无线传感器网络的节点定位技术概述142
9.1.1无线传感器网络节点定位的研究内容142
9.1.2无线传感器网络节点定位的研究现状143
9.1.3无线传感器网络节点定位的主要技术挑战146
9.2无线传感器网络的定位机制147
9.2.1基于测距的定位算法147
9.2.2非基于测距的定位算法151
9.3一种基于测距的协作定位策略159
9.3.1刚性图理论简介159
9.3.2基于刚性图的协作定位理论160
9.3.3LCB定位算法161
9.4节点位置估计更新策略162
9.4.1动态网络问题162
9.4.2更新策略163
参考文献164
第10章无线传感器网络的时间同步
10.1无线传感器网络的时间同步概述167
10.1.1无线传感器网络时间同步的研究内容167
10.1.2无线传感器网络时间同步的研究现状168
10.1.3无线传感器网络时间同步的主要技术挑战169
10.2无线传感器网络的时间同步机制170
参考文献180
第11章无线传感器网络的网内信息处理
11.1无线传感器网络的网内信息处理概述182
11.1.1无线传感器网络网内信息处理的研究内容182
11.1.2无线传感器网络网内信息处理的研究现状183
11.1.3无线传感器网络网内信息处理的主要技术挑战184
11.2无线传感器网络的数据融合技术184
11.2.1与路由相结合的数据融合184
11.2.2基于反向组播树的数据融合186
11.2.3基于性能的数据融合187
11.2.4基于移动代理的数据融合189
11.3无线传感器网络的数据压缩技术191
11.3.1基于排序编码的数据压缩算法191
11.3.2分布式数据压缩算法192
11.3.3基于数据相关性的压缩算法194
11.3.4管道数据压缩算法194
11.4无线传感器网络的协作信号信息处理技术195
11.4.1网元层的CSIP技术195
11.4.2网络层的CSIP技术196
11.4.3应用层的CSIP技术196
11.4.4CSIP技术展望197
参考文献198
第12章无线传感器网络的安全技术
12.1无线传感器网络的安全问题概述201
12.1.1无线传感器网络安全技术的研究内容201
12.1.2无线传感器网络安全技术的研究现状202
12.1.3无线传感器网络安全技术的主要技术挑战205
12.2无线传感器网络的安全问题分析205
12.2.1无线传感器网络物理层的安全策略206
12.2.2无线传感器网络链路层的安全策略207
12.2.3无线传感器网络网络层的安全策略207
12.2.4无线传感器网络传输层和应用层的安全策略209
12.3无线传感器网络的密钥管理和入侵检测技术209
12.3.1无线传感器网络的密钥管理209
12.3.2无线传感器网络的入侵检测技术211
参考文献214
第4篇无线传感器网络的自组织管理技术
第13章无线传感器网络的节点管理
13.1无线传感器网络的节点管理概述216
13.1.1无线传感器网络节点管理的研究内容216
13.1.2无线传感器网络节点管理的研究现状217
13.1.3无线传感器网络节点管理的主要技术挑战218
13.2无线传感器网络的节点休眠/唤醒机制218
13.2.1PEAS算法218
13.2.2基于网格的调度算法219
13.2.3基于局部圆周覆盖的节点休眠机制220
13.2.4基于随机休眠调度的节能机制221
13.3无线传感器网络的节点功率管理222
13.3.1动态功率管理和动态电压调节222
13.3.2基于节点度的算法224
13.3.3基于邻近图的算法224
13.3.4基于二分法的功率控制224
13.3.5网络负载自适应功率管理算法226
参考文献227
第14章无线传感器网络的资源与任务管理
14.1无线传感器网络的资源与任务管理概述229
14.1.1无线传感器网络资源与任务管理的研究内容229
14.1.2无线传感器网络资源与任务管理的研究现状230
14.1.3无线传感器网络资源与任务管理的主要技术挑战230
14.2无线传感器网络的资源管理技术231
14.2.1自组织资源分配方式231
14.2.2计算资源分配232
14.2.3带宽资源分配235
14.3无线传感器网络的任务管理技术237
14.3.1任务分配237
14.3.2任务调度239
14.3.3负载均衡243
参考文献245
第15章无线传感器网络的数据管理
15.1无线传感器网络的数据管理概述248
15.1.1无线传感器网络数据管理的研究内容248
15.1.2无线传感器网络数据管理的研究现状249
15.1.3无线传感器网络数据管理的主要技术挑战249
15.2无线传感器网络的数据管理系统250
15.2.1TinyDB系统250
15.2.2Cougar系统251
15.2.3Dimensions系统252
15.3无线传感器网络数据管理的基本方法253
15.3.1数据模式253
15.3.2数据存储254
15.3.3数据索引255
15.3.4数据查询257
参考文献260
第16章无线传感器网络的部署、初始化和维护管理
16.1无线传感器网络的部署、初始化和维护管理概述261
16.1.1无线传感器网络部署、初始化和维护管理的研究内容261
16.1.2无线传感器网络部署、初始化和维护管理的研究现状262
16.1.3无线传感器网络部署、初始化和维护管理的主要技术挑战263
16.2无线传感器网络的部署技术264
16.2.1采用确定放置的部署技术264
16.2.2采用随机抛撒且节点不具移动能力的部署技术265
16.2.3采用随机抛撒且节点具有移动能力的部署技术265
16.3无线传感器网络的初始化技术266
16.3.1UDG模型266
16.3.2基于MIS的初始化算法266
16.3.3基于MDS的初始化算法268
16.4无线传感器网络的维护管理技术270
16.4.1覆盖与连接维护技术270
16.4.2性能监测技术271
参考文献272
第5篇无线传感器网络的开发与应用
第17章无线传感器网络的仿真技术
17.1无线传感器网络的仿真技术概述275
17.1.1网络仿真概述275
17.1.2无线传感器网络仿真研究概述275
17.2常用网络仿真软件276
17.2.1OPNET简介276
17.2.2NS279
17.2.3TOSSIM280
17.3OMNeT++仿真软件281
17.3.1OMNeT++概述281
17.3.2NED语言282
17.3.3简单模块/复合模块287
17.3.4消息290
17.3.5类库291
17.4仿真示例296
参考文献303
第18章无线传感器网络的硬件开发
18.1无线传感器网络的硬件开发概述304
18.1.1硬件系统的设计特点与要求304
18.1.2硬件系统的设计内容304
18.1.3硬件系统设计的主要挑战305
18.2传感器节点的开发305
18.2.1数据处理模块设计305
18.2.2换能器模块设计307
18.2.3无线通信模块设计307
18.2.4电源模块设计309
18.2.5外围模块设计309
18.3传感器节点原型的开发实例Mica310
18.3.1Mica系列节点简介310
18.3.2Mica系列处理器/射频板设计分析313
18.3.3Mica系列传感板设计分析315
18.3.4编程调试接口板介绍317
参考文献318
第19章无线传感器网络的操作系统
19.1无线传感器网络操作系统概述320
19.1.1无线传感器网络操作系统的设计要求320
19.1.2几种典型的无线传感器网络操作系统介绍321
19.1.3无线传感器网络操作系统设计的主要技术挑战321
19.2TinyOS操作系统322
19.2.1TinyOS的设计思路322
19.2.2TinyOS的组件模型322
19.2.3TinyOS的通信模型324
19.3基于TinyOS的应用程序运行过程解析324
19.3.1Blink程序的配件分析325
19.3.2BlinkM模块分析327
19.3.3ncc编译nesC程序的过程329
19.3.4Blink程序的运行跟踪解析329
19.3.5TinyOS的任务调度机制的实现338
19.3.6TinyOS的事件驱动机制的实现342
19.4TinyOS的使用346
19.4.1TinyOS的安装346
19.4.2创建应用程序348
19.4.3使用TOSSIM仿真调试应用程序348
19.4.4使用TinyViz进行可视化调试349
19.4.5将应用程序导入节点运行350
参考文献351
第20章无线传感器网络的软件开发
20.1无线传感器网络软件开发概述353
20.1.1无线传感器网络软件开发的特点与设计要求353
20.1.2无线传感器网络软件开发的内容354
20.1.3无线传感器网络软件开发的主要技术挑战355
20.2nesC编程语言355
20.2.1nesC语言介绍355
20.2.2nesC的语法规范356
20.2.3nesC应用程序开发364
20.3无线传感器网络的应用软件开发367
20.3.1无线传感器网络的编程模式367
20.3.2无线传感器网络的中间件设计370
20.3.3无线传感器网络的服务发现372
参考文献373
第21章无线传感器网络应用于环境监测
21.1环境监测应用概述375
21.1.1环境监测应用的场景描述375
21.1.2环境监测应用中无线传感器网络的体系架构375
21.2关键技术377
21.2.1节点部署377
21.2.2能量管理377
21.2.3通信机制378
21.2.4任务的分配与控制379
21.2.5数据采样与收集379
21.3无线传感器网络用于环境监测的实例380
21.3.1公路交通监测380
21.3.2建筑物健康状况监测384
21.3.3"狼群计划"385
参考文献387
第22章无线传感器网络应用于目标追踪
22.1目标追踪应用概述388
22.1.1目标追踪应用的场景描述388
22.1.2目标追踪应用的特点与技术挑战388
22.1.3目标追踪应用中的无线传感器网络系统架构389
22.2无线传感器网络用于目标追踪的关键技术390
22.2.1追踪步骤390
22.2.2追踪算法392
22.2.3面向目标追踪的网络布局优化400
22.3基于无线传感器网络的车辆追踪系统实例402
22.3.1系统架构402
22.3.2关键问题403
22.3.3关键技术404
参考文献407
附录英汉缩略语对照表410
未来:无线传感器的国产化
随着物联网时代的兴起,各种3G、WIFI等方式的兴起,可以说给无线传感器的发展一个十分重要的时机。无线传感器应该凭借着机会,加快自身发展的国产化、网络化。
一是提高民企企业和合资企业的市场份额。首先,依靠自身传统的技术和装备手段保证自身的份额,同时利用中小企业的联动性,整合发展。提速学习核心技术,争取能够获得更大的市场份额,打破国外厂商在无线传感器上的垄断地位。
二是抓住物联网等新型产业的兴起,争取自身在无线物联网发展中获得一个较高的地位。我国在无线传感器上的发展已经在日益增长,也有了自己的一套发展模式。虽然在整体上的档次还不如国外技术,但我国企业能依托外资企业在过发展的契机,结合各种高端科技,将发展滞后的无线物联网技术顺利推进,加大自身的市场份额,提升无线物联网的国产化。同时扩大自身的市场份额。
三是提高国产传感器的发展技术和制造工艺,使得国有企业能占有稳定的份额,减少价格劣势,发挥国有企业在市场中的主导地位。使得技术总体上跟不上国外发展的前提下,仍然不会被巨大的价格打入冷宫,使得大多数无线传感器企业可以购买到全新的设备,在新技术和新工艺上也能慢慢追赶上外资企业的步伐。