选择特殊符号
选择搜索类型
请输入搜索
电池修复仪分为综合修复仪、脉冲修复仪、容量测试仪、智能充电仪和活化仪,可以分别针对电池硫酸盐化、不平衡、极板软化、失水、开路等进行修复!
酸盐化、不平衡、极板软化、失水、开路等进行修复!
对电池进行补水时,调节电解液的比重!
焊接电瓶用。
检测电解液密度
数字万用表 |
用来测量电池的电压和线路的通断 |
PVC胶水 |
修复完毕,用来粘合盖板用 |
大螺丝刀 |
用来撬开电池盖板 |
平板锉 |
用来清理电池盖板和电池上面的凸起用 |
1、电池的“失水”电池,“失水”原因及判断
(1)电池的“失水”电池,“失水”原因
动力型VRLA铅酸蓄电池的失水是电池早期失效最常见、最普遍的故障,也是引发其它早期失效的根源。所以一定要控制好和解决好电池的失水问题。
铅酸蓄电池的电解液是硫酸的水溶液,在铅酸蓄电池中电解液是参加反应的组分,因此电池的容量对电池内的电解液有直接的依赖关系。通常动力型VRLA铅酸蓄电池的失水是指电解液失去水份。引起水份流失主要有以下几方面:水份电解生成的氢气或氧气离开蓄电池;板栅被腐蚀使铅(Pb)转化成二氧化铅(PbO2)过程中,氧的被吸收使含水组份失去了氧;蒸发失掉水;水蒸气也可以透过电池的壳壁直接失掉;电池内的水蒸气随氢气和氧气益出蓄电池等原因。
铅酸蓄电池当前主要是为电动车,助动车,电动工具配套使用。通常为了解决电池的备用时间的问题,要满足快速充电,缩短充电时间的需要,尽量把充电时间控制在6—8小时或更短的时间,只能把充电电压设置的较高;设置的这个较高充电电压大大超过铅酸蓄电池析气的电压(即在单体电池内水的分解电压是1.23V)。在单体电池内正,负极板析出的氧气和氢气除部分气体在氧循环过程中氧在负极被氧还原外,其余气体则通过安全排气阀排出电池。在气体排出的过程中又会带出单体电池内部的水蒸气,这就进一步加速了水的流失。充电电流越大,电池内部的温度会越高,水的电解越加剧,则排出的氢气,氧气会越多,水蒸气被同时带出的越多,电池的失水越快,越严重的恶性后果。
电瓶修复仪厂家九大修复优越性能:
1、电池表面无损伤修复,电瓶修复率达90%-95%以上
2、多功能语音智能自动化蓄电池修复仪、无需人工值守、修复完成后自动报警,自动转换模拟充电功能。
3、同时可以修复4组、8组、16组、32组。
4、修复后电瓶效果持久耐用,修复后寿命可延长8-11个月以上。
5、全自动数字显示电池电压、电流、内阻大小自动测量,电池状况通过仪器测试一目了然。
6、学员易接受、实体操作讲解、接受能力强、学习快,有专业技术培训师为你指导操作。
7、机器自带防反接、短路功能、使反修率降低,最主要的是仪器能长久正常工作。
8、微控智能修复仪,操作明显,多功能液晶显示,智能化更强,修复效果更好。
9、节能型设计,环保型电池修复仪,无噪音适合任何地方开店,降低修复成本、减少生活污染。
2.电池的“硫酸盐化”,产生原因及判断
(1)铅酸蓄电池的“硫酸盐化”表现特征
铅酸蓄电池的“硫酸盐化”是铅酸蓄电池经使用一段时间后在电池的内部负极板的表面上生成一层白色而且坚硬的硫酸铅结晶体,用一般的充电方法(如三阶段直流充电法)不能把这一层白色的硫酸铅结晶体转化为活性的硫酸铅物质。这就是“硫酸盐化”,通常也称“硫化”。负极板硫酸盐化的地方就像罩上了一层坚硬的薄膜,使得里面的活性的物质不能继续参加充放电的电化学反应,导致负极板参加充放电的电化学反应面积大大减少,从而导致电池的失效。动力型VRLA铅酸蓄电池的“硫酸盐化”失效模式是最常见的,是普遍发生的。在动力型VRLA铅酸蓄电池的电池失效中,有70%--80%是电池“硫酸盐化”造成的。
动力型VRLA铅酸蓄电池的“硫酸盐化”表现特征是:在没有明显失水的铅酸蓄电池其电解液的密度低于正常值;充电时间大大缩短,充电时电压爬升的特别快,很短的时间就显示充电已充好,电量已满;充电时过早的产生气泡,严重时一充电就有气泡;电池发热厉害,温升加快;电池的容量大大降低;“一充电就到,一放电就光”是铅酸蓄电池的“硫酸盐化”典型特征。
(2)铅酸蓄电池产生“硫酸盐化”的原因
(2.1)电池长时期充电量不足或不能及时对使用过的电池充电
造成铅酸蓄充电量不足的主要原因有:
A充电器与电池不匹配造成电池充电量不足,有的充电器充电(如三段式充电器恒充电压)电压设置的偏低,可导致电池长时间充电不足;
B充电时间短造成电池充电不足,有的人见充电器的绿灯一亮就把掉充电器,没有对电池进行充分的浮充电;
C不能及时对使用过的电池充电,有的人一次性使用时间较短,电没用完,就不及时充电,电池用两三次(两三天或时间更长)后再充电一次;
这样会导致溶解在电解液中的硫酸铅(PbSO4)重新析出,沉积在电池的极板上形成电池的“硫酸盐化”
(2.2)电池长时期过量放电或小电流放电,使极板深处活性物质的孔隙内生成硫酸铅(PbSO4)
电池经常欠电压(低容量)下使用,及易造成负极板的“硫酸盐化”;电池自放电严重,时间长了会使形成深放电,也会使电池负极板形成“硫酸盐化”。
(2.3)已放电或半放电状态的电池搁置时间过长
有的电池使用者不能正确认识和使用铅酸电池,对于长期不用的铅酸电池不能正确的定期充电,引起铅酸电池极板形成“硫酸盐化”。严重的会引起不可逆的“硫酸盐化”。
(2.4)电解液的浓度变高,成分不纯,也会引发电池的“硫酸盐化”。
(2.5)电池经常处于变化剧烈的温度环境下,也会引起铅酸电池极板形成“硫酸盐化”。
(2.1)条讲到的铅酸蓄电池失水,会引起电解液的浓度变高;在电解液中混入了其他金属离子或不利物质;从温度较高的环境里迅速的那到温度较低的环境下,会因为温度的降低使溶解在电解液中的硫酸铅(PbSO4)溶解度降低而沉积到负极板上;这些都会引起铅酸电池极板形成“硫酸盐化”。
(3)动力型VRLA铅酸蓄电池“硫酸盐化”的判断
(3.1)充电过程中:充电过程中电池的端电压上升很快,峰植很高,会出现单体铅酸蓄电池电压达2.8 V左右,六个单体组成一块的铅酸电池组电压达到16.2V以上,可判为电池的“硫酸盐化”。
(3.2)放电过程中:放电过程中铅酸蓄电池电池的端电压下降很快,电池的容量明显减少, 可判为电池可能“硫酸盐化”。
(3.3)电解液的检查:检查、测量电池的硫酸电解液明显低于正常值,可判为电池的“硫酸盐化”。
3:动力型VRLA铅酸蓄电池“正极板软化”, 产生原因及判断
(1)动力型VRLA电池“正极板软化“的表观现象
对故障电池在充电过程时,抽出一些电解液,观察电解液如果发现发红或发黑,严重的会是墨黑或呈现泥浆状,说明电池正极板已经软化。从正极板外观看,极板开始是坚硬的,随着不当使用及使用周次的增加,极板软化开始发生,发展,逐渐的变松软直到变成糊状。正极板的软化使得极板上的活性物质减少,极板上表面积下降,导致电池的容量大大下降。铅酸蓄电池正极板软化,活性物质的脱落是不可避免的。随着充放电周次的增加,极板上活性物质表面收缩,使小孔集聚增多,使大孔不断增加,破坏了正极板的结构,导致正极板的活性物质软化脱落。
(2)铅酸蓄电池“正极板软化”的原因
铅酸蓄电池正极活性物质是二氧化铅,其本身结构不是很牢固,放电时生成硫酸铅。铅酸蓄电池正负电极充放电电化学反应式为:
正电极反应: PbO2 4H SO42- 2e = PbSO4 2H2O
负电极反应: Pb SO42- — 2e = PbSO4
电池的总反应:PbO2 Pb 2H2SO4 = 2PbSO4 2H2O
正向为放电反应,反向为充电反应。
硫酸铅的摩尔体积比二氧化铅大,放电时正极板上的活性物质体积会膨胀,一摩尔二氧化铅转化为一摩尔硫酸铅,其体积会增加95%。在使用过程中要反复的充放电,这样正极板就要反复的收缩和膨胀,致使正极板上二氧化铅粒子之间的相互结合能力逐渐下降,二氧化铅粒子之间的相互结合力逐渐松弛,从而导致正极板上的活性物质易于脱落。如果电池的放电深度较小,极板的膨胀、收缩的程度也会减小,结合力的破坏可以变缓慢。所以经常深放电、透支放电使用的铅酸蓄电池会因为铅酸蓄电池正极板软化而使电池的循环寿命大大缩短。铅酸蓄电池正极板的二氧化铅通常主要是由α氧化铅和β氧化铅组成。α氧化铅在正极板上通常尽量少参加电池的放电反应,这样能起一定的支撑作用。α氧化铅只能在碱性的环境中生成,在酸性的环境中只能生成β氧化铅,而铅酸蓄电池是在酸性的环境中工作的。如果α氧化铅一旦参加放电反应,再充电时只能生成β氧化铅,导致正极板软化,在充电析气时,α氧化铅会脱离正极板,部分溶解在电解液中,使电解液变黑。
A:大电流放电铅酸蓄电池正极板软化的原因之一
用在电动车上的动力型VRLA铅酸蓄电池在使用者超负荷(超负荷载人,载物)使用,上坡,启动使用时,电池的放电电流可达数十安培,电池正极板表面(更靠近负极板)的氧化铅参加反应快,深层的氧化铅反应后形成的局部硫酸已经转化为水,深层内缺少参加反应的物质——硫酸,而隔板中的硫酸扩散首先到达是极板的表面,所以电池极板表面的α氧化铅就参加了反应,再充电时只能生成β氧化铅,无法再生成α氧化铅;α氧化铅的减少导致正极板软化的发生和加剧。电动车上使用的动力型VRLA铅酸蓄电池可以说是长期工作在大电流放电下,所以电池正极板软化是常见故障及失效模式原因之一。
B:电池的深度放电是电铅酸蓄电池正极板软化的原因之一
电池的使用者不能正确的使用电池,如不能及时的给使用过的电池充电,经常欠电压(欠电压保护后的升压)下使用,欠电压下使用时,使电池正极板表面的β氧化铅接近用完,使得α氧化铅来参加反应,从而导致正极板软化。α氧化铅脱落到电解液后会游离到极板和隔膜上,会堵塞通孔,形成半通孔或闭孔,使硫酸的通道被堵塞,而被堵塞着的氧化铅不能参加了电池的充放电反应,造成电池的容量会明显下降,使得电池失效。
C: 电池充电时析出的气体使正极板软化
电池充电器与电池不匹配,转浮充电后,充电器的输出电压过高,导致电池经常处在过充电状态。充电过程中正极板孔隙中逸出大量气体,在极板孔隙中造成压力,在高电压作用下使活性物质脱落,形成正极板软化。所以,大量析气不仅仅会造成铅酸蓄电池的失水,而且也会使正极板软化。电池在失水以后,在充放电过程反应面积会减少,失去硫酸电解液部分的电极就不能参加电化学反应,电流会集中到没有失水和硫化的极板上,这就使得充电过程中通过极板的电流加大,会使电铅酸蓄电池正极板软化。
硫化同样会使在充放电过程反应面积减少,所以失水和硫化是导致铅酸蓄电池正极板软化的两个重要原因。
D电池充电器与电池不匹配使正极板软化
还有一种情况是充电器的输出电流过大,既使用输出电流大的充电器给小容量的电池充电,同样会造成铅酸蓄电池正极板的软化。
(3)铅酸蓄电池“正极板软化”的判断
A:电解液的观察: 抽出一些电解液,观察电解液如果发现发红或发黑,严重的会是墨黑或呈现泥浆状,可判断电池正极板已经软化。
B:电池正极板的观察:解剖电池,观察正极板,极板的表面积减少,失去坚硬感,变软,重量减轻,可判断电池正极板软化。
C:电池壳底部观察:观察电池壳底部有大量的活性物质的沉积物, 可判断电池正极板已经软化。
4.动力型VRLA铅酸蓄电池的“热失控”故障造成铅酸蓄电池的失效,产生原因及判断
铅酸蓄电池在充电时电流过大,特别是在充电后期充电器不能及时转浮充,使得电池发热量很大,发热严重时,析气压力很高,会导致铅酸蓄电池的塑料壳体受热变形、破裂致使铅酸蓄电池的失效。
(1)引起动力型VRLA铅酸蓄电池“热失控”故障的原因:
A:电池失水引起电池热失控
铅酸蓄电池严重失水后,电池中正负极间隔板会发生收缩变形,导致蓄电池正负极上的活性物质附着力下降,内阻增大, 导致在充放电过程中电池的发热量就会增大,电池的温度近而上升,使蓄电池的析气过电位降低,析气量又增大,正极析出的大量氧气通过内部“通道”在负极表面反应,又泽放出大量的热量,又使电池的温度大量上升,形成了恶性循环,这就是铅酸蓄电池的“热失控”。当. “热失控”的铅酸蓄电池内部温度达到或超过其塑料外壳材料的软化温度(热变形温度)时蓄电池就会产生“热变形”。在铅酸蓄电池中热容量最大的是电解液中的水,失水的电池,热容量会大大减小,产生的热量又使铅酸蓄电池的温度上升加速,进而加速电池的热失控。
B:单格电池提前失效故障,导致电池热失控
动力型VRLA铅酸蓄电池组使用过程中的失效,通常是某一块电池的某个单格电池的提前失效。电池充电时,在充电恒电压不变的情况下,提前失效的单格电池表现出电压不上升或上升很缓慢,延长充电时间,这就会使好的单格电池电压相对过高,还会使这块电池或整组电池因过充电而发热,导致了电池热失控。
C: 充电器与铅酸蓄电池组不匹配, 导致电池热失控
充电器的电压过高,高出铅酸蓄电池组规定值,使电池的析气量大大增加, 导致电池热失控。
D:电池的氧循环气路过于畅通, 导致电池热失控
铅酸蓄电池内部的氧循环气路过于畅通时,正极板析出的氧气直接作用到负极板上,进行氧循环,产生的热量不能及时的排出,导致电池热失控。
(2)动力型VRLA铅酸蓄电池“热失控“故障的判断
A:充电过程中:在电池充电过程中,电流先降后升,并伴有高热, 并充不进电或充进电量很少,可判断电池热失控。
B:电解液的观察: 电解液量明显减少, 充电过程中电池发热量大,电池壳体烫手很厉害,可判断电池热失控。
C:充电时电压的观察:充电时电池的充电时间大大超过正常规定的时间,电池的电压仍达不到充电终止值,而且电池壳体烫手很厉害,可判断电池热失控。
大多数的铅酸蓄电池不是单独使用的,而是多块在一起用如:“电动车电瓶通常是三块或者四块一起,每一组电瓶中出现一块或者两块落后,就能导致其他好的也无法正常使用,这叫不平衡。
在电池充电过程中,会发生水的电解,产生氧气和氢气,使水以氢、氧的形式散失,所以又称析气。水在电瓶电化学体系中,起到非常重要的作用,水量的减少会降低参与反应的离子活度,减少硫酸与铅板的接触面积 导致电池内阻上升,极化加剧,最终导致电池容量下降。
电池放电时,在正极负极都产生硫酸铅,正极由于阳极氧化作用的存在,硫酸铅极易在充电时转化成二氧化铅,而负极则不同,在长期亏电保存,经常过放电,长期充电不足等因素存在的情况下,会逐渐在负极表面形成一层致密坚硬的硫酸铅层,也叫做硫酸铅结晶,不仅本身溶解度大幅度下降,难以参加反应,同时堵塞了电解液和深层活性物质的接触通道,从而导致了电池容量下降。
极板是多空隙的物质,有比极板本身面积大的多的比表面积,在电池反复的充放电循环过程中,随着极板上不同物质的交替变换,将会使极板空率逐渐下降,在外观表现上,则是正极板的表面由开始时的坚实逐渐变的松软直到变成糊状,这时由于表面积下降,将会导致电池容量的下降。大电流充放电、过放电都会加速极板的软化。
生产上使用的合金有3类,传统铅锑合金,低锑或超低锑合金,铅钙系列.上述三种合金铸成的板栅,在蓄电池的充电过程中都会被氧化成硫酸铅和二氧化铅,最后导致丧失支撑活性物质的作用而使电池失效;后由于二氧化铅腐蚀层的形成,使铅合金产生应力,使板栅线性长大变形,最后使极板整体遭到破坏以及腐蚀.电池的骨架板栅由铅合金制作而成,虽然其有很强的抗腐蚀能力,但长期浸泡在酸性电解液当中,仍然会使起发生金属腐蚀,以至于发生板栅裂隙甚至断裂,导致容量的下降。
正负极板间本来应该由隔膜(板)隔开,但如果有焊渣或枝晶穿透,则正负板想连,形成短路,严重的短路可导致该单体电压变为零,如果导致正负相连的物质本身电阻较大,比如枝晶,则不会马上使该单格电压变为零,而是发生较快的自放电,俗称软短路。
一般发生在汇流排焊接以及极柱焊接和端子焊接阶段,表现形式通常不是完全断路,而是虚焊,这时在该虚焊处会产生很大的内阻,导致电池容量下降。电池有可能一开始各方面都正常,在用了一段时间后发生虚焊现象,这通常是由于在焊接时没有焊好,存在裂隙,过在使用过程中,这一区域将产生尖端腐蚀,致使裂隙以较快的速度加大。
修复方法:100A检测电池电压0V为开路,用单个测量的方法,测量出开路的地方,焊好。
电池的修复,可以通过各种手段来把电池的某些性能恢复到与新电池接近的水平。
(1)脉冲蓄电池修复机,其中包括(正频脉冲、低频脉冲、宽频脉冲、谐振脉冲、扫描脉冲、正负脉冲等),运用的是高频高压或低频低压,大电流充电,大电流放电的原理,此种修复机对蓄电池的硫化具有一定的效果,但是经过一定的时间之后,会出现蓄电池极板严重损坏的现象。
(2)阶梯波蓄电池修复机,通过阶梯波比例协调、完成对蓄电池的修复,此种修复机对蓄电池的硫化具有较好的效果,但是对蓄电池内部的游离子容易引起混乱,导致化学反应的间接中断.
(3)等离子蓄电池修复仪,运用的是先进的等离子修复技术,具有低温控制、等离子智能导航、离子自动吸附、模拟充电等功能,补缺了脉冲修复机、正负离子修复机的缺点,真正达到修复蓄电池硫化的目的。已获国家专利,专利号为: 200920148526.9,(可以通过国家知识产权局”或“百度专利搜索”查证)
目前市场上修复效果最好修复范围最广的蓄电池修复仪 产品名称: 铅酸蓄电池修复仪 产品型号: ACXF-4A 产品尺寸: 350*...
目前市场上修复效果最好修复范围最广的蓄电池修复仪 产品名称:铅酸蓄电池修复仪 产品型号:ACXF-4A 产品尺寸:350*300*150mm 工作原理: 采用目前最先进的电子扫频脉冲技术,不间断地发出...
看起来百十块的机器卖几千块,一定是骗人的。 真正有用的蓄电池修复仪,成本很高,设计很充分,功能不一定无所不能。
充电工作模式参数如下表:
充电节数 |
3~4节12V串联 |
充电恒流 |
1~4A |
充电限压 |
节数×14.8V |
转换电流 |
0.2×充电恒流 |
浮充电压 |
节数×13.8V |
修复工作模式参数如下表:
修复节数 |
3~4节12V串联 |
充电恒流 |
1~4A |
修复电流 |
0.1×修复电流 |
修复限压 |
节数×15.4V |
程序时间 |
1~99小时 |
电流频率 |
60kHz |
活化工作模式参数如下表:
活化节数 |
3~4节12V串联 |
活化电流 |
1~4A |
活化限压 |
节数×16.5V |
转换电流 |
0.2×再生电流 |
转换周期 |
2小时 |
维持电压 |
节数×14.8V |
修复方法:撬开电池上方的盖板。一些电池的盖板是ABS胶粘接的,一些电池是达扣连接的。有的是滑板。注意撬开盖板的时候,不要损坏盖板。这时可以看到6个排气阀的橡胶帽。打开橡胶帽,露出排气孔,通过排气孔可以看到电池内部。一些电池的排气阀底座是可以旋开的,可以不打开橡胶的排气阀而旋开排气阀底座。一些电池的橡胶帽周围还有一些填充物。打开盖,用手电照着,看小孔内部是否有干涸现象,即电池是否失水。电池的极板是用白色玻璃纤维棉包裹着的,正常情况应该是湿润的。用滴管吸入蒸馏水由排气孔注入电池。把加好水的电池用透气的遮挡物覆盖排气孔,以防止灰尘落入排气孔。最好用医用的二次蒸馏水。补水的原则是宁少勿多。不够可以再加,多了造成酸比重下降,电池容量就会不足。无经验者可以按每孔5mL掌握。最好是看着加,湿乎乎,亮晶晶,水汪汪。湿乎乎正好,亮晶晶就多了,水汪汪就太多了。
特别提示:补水工具使用玻璃、塑料等吸管。建议使用医用一次性注射器,使用方便而且方便计量。补水工具不能使用任何含金属的器具,注射器应拔去金属针头,套一节塑料管后使用。
修复方法:将硫化的电池用脉冲修复仪修复,采用高压(30V-50V) 脉冲(8330HZ) 小电流(电池标称容量的1%-2%)的方式,用10到20小时的时间,去除电池里结晶后变的坚硬的硫酸铅。
修复方法:将电池放电止10.5V后,用灯泡深放电1-5小时。然后用活化仪,活化修复。
修复方法:水电池,可以打孔清晰,将短路的铅粉弄出! 电动车电池,可以迅速短路正负极,将短路的地方烧断!
修复方法:100A检测电池电压0V为开路,用单个测量的方法,测量出开路的地方,焊好。
用万用表可以测量出电池开路的地方!
(1)车用电瓶领域,像电动车电瓶、公交车电瓶、汽车电瓶、火车电瓶等领域!
(2)电力系统领域,像供电站机房所使用的蓄电池。
(3)通信系统领域,像邮电通信,通信专用网、用户接入网等领域所使用的蓄电池。
(4)金融系统领域,像中、农、工、建四大银行领域所使用的蓄电池。
(5)铁路系统领域,像全国各地的铁路领域所使用的蓄电池。
(6)UPS系统领域,像应急电源的使用等领域所使用的蓄电池。2100433B
蓄电池修复方案 (2)
蓄电池修复方案 蓄电池组容量减少,电动车行驶距离缩短,哪怕蓄电池组“坏死” ,您都不要着急,按 照我们提供的本方案,使用我们的产品:蓄电池延寿修复器—易行宝∕易能王(以下简称修复 器),自己动手,简单操作,您便可以获得意外的惊喜! 蓄电池组是由 2块以上的单体蓄电池串联组成 (如 36V 的蓄电池是由 3块 12V 的蓄电池 串联组成, 48V 的蓄电池是由 4 块 12V 的蓄电池串联组成等),蓄电池容量减少的原因很复 杂,但归结起来主要是: 1、电池极板因结晶而硫化,严重的硫化会腐蚀极板,使蓄电池完全坏死; 2、蓄电池极板因“过充电”或“过放电”而软化,有的还导致极板铅粉脱落、穿孔、外壳 变形或电解液外漏等; 3、蓄电池“失水”(包括免维护蓄电池)而无法产生电解化学反应,严重的“失水”会使 电解液变质发黑或成为硬块; 4、电动车启动、加速、过重负载产生的瞬间强电流拉伤电池极板,使极板涂
蓄电池修复方案
蓄电池修复方案 蓄电池组容量减少,电动车行驶距离缩短,哪怕蓄电池组“坏死” ,您都不要着急,按 照我们提供的本方案,使用我们的产品:蓄电池延寿修复器—易行宝∕易能王(以下简称修复 器),自己动手,简单操作,您便可以获得意外的惊喜! 蓄电池组是由 2块以上的单体蓄电池串联组成 (如 36V 的蓄电池是由 3块 12V 的蓄电池 串联组成, 48V 的蓄电池是由 4 块 12V 的蓄电池串联组成等),蓄电池容量减少的原因很复 杂,但归结起来主要是: 1、电池极板因结晶而硫化,严重的硫化会腐蚀极板,使蓄电池完全坏死; 2、蓄电池极板因“过充电”或“过放电”而软化,有的还导致极板铅粉脱落、穿孔、外壳 变形或电解液外漏等; 3、蓄电池“失水”(包括免维护蓄电池)而无法产生电解化学反应,严重的“失水”会使 电解液变质发黑或成为硬块; 4、电动车启动、加速、过重负载产生的瞬间强电流拉伤电池极板,使极板涂
1、 重新配组。整组电池损环以后,我们往往对电池进行充放电检测,在检验中往往会发现一组电池中有50%的电池并没有损坏。其原因也就是在串连电池组中,个别的电池落后形成整组电池功能下降,以至于整组电瓶功能下降。
2、 补水。对使用了半年的电池进行一次补水,可以延长电池的使用寿命,延长时间平均达到3个月以上。应该注意的是,每次补水以后,电池都利用处于过充电状态把电池由“准贫液”转为“贫液”状态,而这个过充电对提高电池容量是有好处的。
3、 消除硫化。采用“科帝”电池修复设备,对电池进行消除硫化的处理。
4、 采取微粒发生器并联在电池上,对电池进行修复。这种方法对修复电池比较好,但是由于修复的比较彻底,所以,如果没有过放电,对于连续使用的电池来说,往往是彻底消除了电池硫化的可能性。
5、 综合修复方法。
对电池采用定期检验,及时除硫和补水,单只电池充电、重新配组。
电瓶的修复,可以通过各种手段来把电瓶的某些性能恢复到与新电瓶接近的水平。 具体到电动自行车电瓶上来讲,公认可以修复的是缺水和硫化。硫化的修复有两大类:脉冲仪器和活性剂(添加剂)。来讲两类产品都有对硫化很好的结果(劣质产品除外)。脉冲仪器的缺点是修复时间长,过程较复杂;活性剂(添加剂)的缺点是加入后很难迅速扩散到整个电瓶当中,从而无法发挥其功效。两者结合效果会更好一些。 但对于“用时间长了”的电瓶,其失效原因各种各样。尤其是电动车电瓶,这是正极板软化问题最严重的电瓶。电摩电瓶,正极板出问题的情况最多。硫化和失水的情况都不多。电动自行车电瓶,也有部分存在正极板问题。事实上,所有的铅酸电瓶,只要使用过一段时间,其正极板的活性物质的结构和化学组成就已经改变了。也就是说,所有“用时间长了”的电瓶,其正极板都或多或少存在着问题。对此没有有效手段来对付它。我们在修复过程中,经常发现有些电瓶不管怎么做都没有效果,这些电瓶一般就是正极板的问题(软化、活物质脱落、栅筋腐蚀等等)所有的电瓶都不能完全修复成新电瓶。可以通过各种手段来把电瓶的某些性能恢复到与新电瓶接近的水平,仅此而已。 电瓶的各种失效模式中,只能说某一种原因占主要地位。我们可以认为一只旧的电瓶,其各种原因都是存在的。也就是说,我们说一只电瓶硫化的时候,并不是说它只有硫化,而是说,影响电瓶性能的主要问题是硫化。其它如失水、正极板栅腐蚀、正极活性物质组份的变化、正极活性物质结构的变化等等肯定在一定程度上存在。这也就是通常我们不能通过消除硫化使电瓶完全恢复的原因。 将电瓶充满电后进行放电,放电曲线与正常曲线进行比较,正常曲线是指同配方同结构同工艺的新电瓶用同样的方法放电所得到的放电曲线。 1、如果放电平台明显降低,而之后的曲线与正常曲线基本平行,则认为是硫酸盐化。 注意符合下述情况就是硫化,以12V电瓶为例,开始电压高于15V(硫化严重的偏离值大),并且随充电时间的增加,电压降低,向15V靠拢;如果改为恒压充电,则电流有增加趋势。 电瓶在使用过程中,各个进程都在进行当中。比如说硫化,在使用中,只要有充不足电的情况,或放电后充电不及时的情况出现,就会有硫化的过程。而如果经常出现就会出现严重的硫化。如果从化学的溶解—沉积理论来讲,由于充电时,正负极板的硫酸铅通常不可能100%地转化成活性物质,则在正常的使用维护条件下,也会出现硫化。软化,有不同的理论解释,但从显微镜图片中,可以观察到在使用过程中,电瓶的正极板的活性物质的结构是在变化的。微孔越来越少,而越来越大,最后形成珊瑚状结构。这个进程是肯定要发生的。它只与循环过程和放电深度有关。 硫化,失水、软化是相互影响的。我们说:一台采用36V10AH的电动车,新的时候可以跑35公里。在电瓶的使用过程中,失水可能是最先发生的。然后,失水导致电解液密度提高,硫化加快。硫化的加快会在充电时加剧失水。这两个因素都会导致容量的下降,同时,正极板的情况也在变糟:负极的硫化过程中,会导致充电后电瓶在两极都存在硫酸铅(这不是说正极发生硫化,这是因为充电电压一定的情况下,负极上的过电位太大而导致正极上电位不足,从而使部分硫酸铅不能被氧化)。而以上因素会使正极的实际容量也下降。当正负极容量都下降之后,新电瓶60%的放电深度,对于旧电瓶来讲就变得不一样了。假如用户每天骑行 20KM,则在容量下降到只能跑20公里的时候,电瓶每天需要100%放电,放电深度变大,软化速度一定会增加。 硫化、失水、软化是一定会同时存在的。在电瓶寿命的未期,我们说某块电瓶是硫化,那是说它容量的下降主要是由于硫化导致的。而不是它只有硫化。有意思的是,电瓶的容量,三个主要因素分别是正极板容量、负极板容量、电解液量和密度。而软化、硫化、失水正好是这三方面的主要变化。电瓶的容量,受限于正、负极板容量和电解液最大电化当量这三者中最低的一个。我们说电瓶硫化了,是说,其负极板容量不足了。可能情况是,负极板最大的容量是3AH,而失水的电瓶的电解液总量也不过只能产生7AH电量,同时,正极板容量是5AH。那么,消除硫化后,此电瓶也不过只能放出5AH电量。这就是大部分电瓶不能恢复到新电瓶水平的原因。 以上只是简单分析。事实要比这个复杂得多。 断格:较大电流放电时,电压非常低,且电流达不到. 短路:电瓶在充电放置一段时间后,其端电压大约在11V、8.5V……等情况时,而放电电压下降非常慢,在某一个电压平台上延续较长时间。 断格的电瓶,在测其端电压时,有时是正常值。但越大电流放电,其电压越低,且通常达不到要求的电流数。 短路的电瓶,其基于短路的不同,现象不同,比如说一个电瓶其某单格由于严重的枝晶短路,而存不住电,则在刚充完电时,电压正常,而放置一段时间后,电压就会逐渐向11V靠拢。测电压则可能得到11-13V的任何数值。但放电时,其电压往往会较快的下降到10.5V,然后其放电曲线基本等同于正常电瓶,只是电压低两V。 而如果是硬短路,则其开路电压一般在10.7V左右. 还有一种情况,就是某个格子其容量非常低.不管是什么原因,这种情况在充电后是很难判断的。但这种电瓶在放电将结束时可以较容易发现。放电将结束时(仍在工作),其电瓶的端电压可能会低于10.8V,甚至仅有8.5V。这是过放导致了反极。而如果在电动车上,如果停车测量,通常不会低于10V,但空转(即电瓶放电时)则可以测出。 2、如果放电平台没有明显下降(还有可能上升),但放电末期拐点明显上升,则失水的可能性大。 3、如果放电平台上升(或无明显下降),但放电末期拐点大幅度上升,甚至可以达到12V(以12V电瓶为例),则极板软化的可能性增大。 但电瓶往往是多种失效形式并存的,在实际判断的时候,要“望闻问切”综合诊断,来配合曲线实验。 1、如果长时间不用,或总是亏电保存,或深放电,则硫酸盐化可能性大。 2、如果总是大电流放电 深放电,则极板软化的可能性增大。 3、如果在充电时电瓶发热,但还没有变形,则电瓶的失水可能性增大。
⑴、可持续升级程序模块:推出内置可持续升级模块,每年更新最新研发的修复程序软件,让你的修复效果更出色,随时随地享受我们的技术更新带给你的最新修复体验。(技术程序升级如电脑升级系统相同,如98系统升级到XP系统) ⑵、正负离子共振:微电脑控制模块自动跟踪发出正负离子,对电瓶极板和硫化物质智能的发射正负离子束,同时自动检测每块电瓶的内阻,硫酸盐结晶颗粒大小,结晶程度,消除硫化和结晶,并促使大型结晶颗粒溶解。 ⑶、正负离子比例协调:微电脑控制模块自动调节α-pbO2和β-pbO2的比例达到1:1.25。两种二氧化铅的差别很大,它们所起的作用也不相同。β-pbO2给出的容量是α-pbO2的1.5~3倍,而α-pbO2具有较好的机械强度,它的存在,正极板活性物质不宜软化脱落,只有α-pbO2和β-pbO2的比例达到1:1.25时,蓄电瓶才...... 会表现出良好的性能。 ⑷、正负离子吸附:独有的正负离子吸附,让脱离的活性物质自动恢复。修复后期,微控模块自动发出正负离子电,脱离活性物质带负电,正极板带正电,异电相吸,活性物质自动吸附归位。 ⑸、波纹水平式容量提升:微电脑根据检测电瓶组最高值和最低值,自动分配每个串连蓄电瓶的正负离子数量,达到饱和值,同组电瓶修复后容量相等。克服了传统修复设备单个修复后电瓶容量不平衡的缺点。 ⑹、模拟充电功能:内置模拟充电电路,修复完成前自动进入模拟试验充电,修复后与普通充电器充电所测试容量相等。 ⑺、微控温度平衡:25℃微控测试系统,温度自动平衡,防止电瓶过热,有效避免热失控,容量过早损失,极板活性物质比例失调。 ⑻、震荡平衡补水:开机160秒自动平衡补水模式,通过离子震荡,让极板和隔板迅速吸收水分,上下平衡。