选择特殊符号
选择搜索类型
请输入搜索
吸气式脉冲激光推进导论,ISBN:9787118080285,作者:
脉冲激光器具有较大输出功率,适合于激光打标、切割、测距等。
1、摘要中应排除本学科领域已成为常识的内容;切忌把应在引言现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。2、不得简单重复题名中已有的信息。比如一篇文章的题名是《几种中国兰试管培...
工程导论(路桥方向)有整套做好的,可以提供的。。。助人为乐。。。。
全光纤窄线宽脉冲激光器
介绍了一种全光纤窄线宽脉冲激光器。该激光器由两部分组成,即脉冲光纤激光器种子和由隔离器、耦合器以及光纤光栅组成的窄线宽脉冲提取装置。脉冲光纤激光器种子是基于半导体可饱和吸收镜(SESAM)为锁模机制的全光纤被动锁模激光器,输出脉冲的光谱宽度约为3 nm。窄线宽脉冲提取部分对脉冲光纤激光器种子输出脉冲的光谱进行提取、窄化,输出脉冲的光谱宽度约为0.1 nm。该激光器操作简单、设备简易,为全光纤结构;不仅可以输出窄线宽光脉冲序列,而且同时还可以输出脉冲光纤激光器种子的光脉冲序列,极大地拓展了脉冲光纤激光器的应用范围。
矿井脉冲激光测距仪综述
摘要:本文是对一种满足矿井建筑和生产掘进对距离测量需求的小型化高精度脉 冲激光测距仪进行大概论述。 它为在煤矿工作的一线人员提供一种满足矿井建筑 和生产掘进对距离测量需求的小型化高精度激光测距仪。 在研究中,创新性地提 出了一种高精度的时间测量方法, 采用脉冲式激光测距方法, 成功研制出一种“高 精度实时激光测距系统”,该测距系统在无合作目标的情况下可实现双向同时测 量,测量范围单向 30 米、测量精度 1厘米。并针对发射电路、接收电路以及时 间测量电路方面提出了优化设计, 从而设计出了一种体积小、 价格低、操作方便 符合防爆要求的高精度矿用激光测距仪。 关键词: 矿井;脉冲激光测距;高精度;防爆。 引言: 国外的发展 : 自从 1961 年美国休斯飞机公司研制成功世界上第一台激光 测距机后,有关激光测距技术的研究一直是激光应用领域的热门课题。 国外许多 大学、研究机构和公司都开展了这
产品构成:
激光美容仪器由光路系统、电源系统、计算机控制系统、冷却系统等组成,光路系统安装在操作枪壳内,电源、控制、冷却系统安装在电源机箱内。
技术参数:
超脉冲激光洗纹身机构成
时域上, 超短脉冲激光产生是开展时-频域精密控制的前提和基础. 至今,小于 5 fs 的锁模钛宝石激光器已有报道,经过腔内色散啁啾补偿,脉冲宽度达到光周期量级. 这样的超短脉冲,可以广泛应用于研究高功率脉冲情况下的各种非线性现象.然而, 由于受本身结构和成本的制约,超短脉冲固体激光器大多用于科学研究. 自 1960 年 实现将铒,钕,铥等稀土离子掺进玻璃中后,光纤激光器的研制就成为了可能.不久 以后,钕离子成功的被掺杂到了光纤波导的芯径中.由于钕离子作为激光增益介质具 有很高的效率,所以,早期的光纤激光器都是以钕离子为基础,工作波长为 1064 nm. 直到 1980 年,铒离子掺杂技术的成熟,基于掺铒离子的光纤激光器越来越受到人们的 关注.最主要的原因就是掺铒光纤激光的工作波长在 1550 nm 附近,正好对应于单模 光纤的最小损耗波段,非常适用于光纤通信系统.之后,其它波段的掺稀土离子,例 如掺钬,掺铥,掺镱,掺镨的光纤同样研制成功,将光纤激光器的输出波长扩展到其 它波段.近几年来,得益于半导体泵浦激光器和光纤高掺杂技术的发展,基于掺稀土 离子的超短脉冲光纤激光器越来越受到人们的重视.光纤激光器由于其在结构,成本 上的优势,已经在科学研究和工业生产中得到了广泛的应用.目前为止,报道的最窄 的光纤激光器的脉冲宽度为 28 fs. 相对于传统的固体激光器,光纤激光器具有不可比拟的优势.光纤激光器掺杂技 术简单,激光传输损耗低,与泵浦光耦合效率高.光纤激光器采用光纤作为传输介质, 可以与其它光纤器件兼容,减少了激光器所占的空间.而且光器件之间采取直接熔接 的方式,相对于固体激光器而言无需复杂的光路调整系统.由于光通信器件的成熟, 激光器成本也可以大大降低.一般单模光纤的芯径为 8 μm, 所以光在芯径内传播时的 功率密度通常很高,非线性作用很强,非常适合用于产生锁模振荡器.
调 Q 的原理是在激光器内加入一个损耗可调节器件,在大部分时间区域内,激光器的损耗很大,几乎无光输出,在某一个极短的时间内,减小器件的损耗,从而使激光器输出一个强度极高的短脉冲。可以通过主动或者被动方式实现调 Q光纤激光器。主动技术一般是在腔内加入一个强度调制器,来控制激光器的损耗。被动技术是利用饱和吸收体或者其它非线性效应例如受激拉曼散射、受激布里渊散射等形成调 Q 机制。一般通过调 Q 方法产生的脉冲在纳秒量级。若想产生更短的脉冲则可以通过锁模方法实现。
可以通过主动锁模或者被动锁模方法来产生超短脉冲。受限于调制器的响应时间,主动锁模产生的脉宽较宽一般为皮秒量级;被动锁模利用的是被动锁模器件,响应时间很短,可以产生飞秒量级的脉冲。下面简单介绍一下锁模原理。 一个激光谐振腔里面有着无数个纵模,对于环形腔来说,纵模频率间隔等于/CC L ,C 为光速,CL 为信号光在腔内往返一周的光程长度。一般来说光纤激光器的增益带宽较大,会有大量的纵模同时运转,激光器所能容纳的模式总数取决于纵模间隔 ∆ν 和增益介质的增益带宽。纵模间隔越小,介质的增益带宽越大,则能支持的纵模数越多。反之,则越少。
对于光纤激光器来说,输出光场的特性取决于纵模的相位特性。如果所有模式相互独立,其相位间没有确定的关系,激光器的输出特性是多纵模振荡;如果所有模式有确定的位相关系,则输出的激光信号是超度脉冲,且峰值功率较大。
当激光器处于多纵模振荡时,激光频谱是由等间隔纵模构成,振幅是无规则的,相位在 −π 到 π 之间随机分布;在时域内,其相位也是在一定范围内无规则起伏,导致强度分布类似噪声。当用响应时间为 T 的器件探测此激光器的光强时,接收到的光强 I (t )是所有满足激光器振荡条件的所有纵模光强的叠加。
由于各纵模之间相位彼此相互独立无特定的位相关系,所以各纵模之间的相干项在时间平均下为零,输出光强是各个纵模平均输出光强之和,不会出现相干脉冲输出,此即为多模自由振荡激光器。
与多模自由振荡激光器相反,如果能采取合适的措施,使相互独立的纵模在相位上存在一定的关系,即使得相邻纵模的位相差为一常数,则激光器的输出特性将大为不同,将会输出脉宽极窄、高峰值功率的脉冲。
脉冲之间的光强接近于 0。也可以通过频谱分析仪观察锁模脉冲序列,如果激光器锁模后,则频谱仪会出现一系列稳定的等间距的尖峰,间距就是腔内的纵模间隔。如果激光器是自由振荡,则频谱仪上的信号是一些列不稳定无规则的尖峰。
由于孤子激光器的功率低,脉宽较宽且有克利边带,要输出更高功率,更短的脉冲,一个方法就是引入展宽脉冲光纤激光器,也叫色散管理孤子光纤激光器,其基本原理就是在激光谐振腔中引进正负色散两种光纤进行色散管理,这样谐振腔中的脉冲来回振荡的时候被周期性地展宽压缩,减少了一个周期内累积的非线性相移,可以提高激光器输出的单脉冲能量,用这种方法可以产生纳焦的飞秒脉冲。同时由于腔内色散是变化的,克利边带将无法产生,得到底座小的高质量脉冲(剩下的底座是高阶色散引起)。要用这种结构产生增益带宽极限的脉冲,腔内和腔外的色散均需要优化。