选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

吸声材料和吸声结构

吸声材料和吸声结构是指用于吸收声能,具有较高吸声能力的材料和结构。

吸声材料和吸声结构基本信息

吸声材料和吸声结构正文

吸声材料和吸声结构主要作用是控制室内(如厅堂、体育馆、播音室)混响时间和消除回声,降低室内(如吵闹的办公室、高噪声的车间)的噪声。吸声材料和吸声结构也用作消声器中的衬垫以降低管道噪声。

吸声材料或结构的吸声性能用吸声系数表示,吸声系数高表示吸声性能好。吸声系数是声波入射到材料或结构表面被吸收的声能和总的入射声能的比值,即=/,它的大小和声波的入射角有关。如果声波的入射是无规的,常用混响室法测量材料的吸声系数;如果声波是垂直入射的,则用驻波管法测量。对同一种吸声材料或结构,用这两种方法所测得的吸声系数不同。通常混响室法所测得的吸声系数比驻波管法高。此外,吸声系数的大小还受声波频率的影响。以频率为横坐标、吸声系数为纵坐标绘出的曲线称为材料或结构的吸声频率特性曲线,又称吸声频谱。通常采用频率为125、250、500、1000、2000和4000赫的吸声系数来表示材料或结构的吸声性能。在噪声降低量的计算中,常用250、500、1000和2000赫四个频率混响室吸声系数的平均值,这个量称为降噪系数(常用NRC表示,算到0.05)。

吸声材料和吸声结构的种类,主要有多孔材料、亥姆霍兹共振器、穿孔板吸声结构(包括微穿孔板吸声结构)、薄板共振吸声结构、柔顺材料等(见表)。

这种材料有许多微小间隙和连续气孔,而且具有适当的通气性能。当声波入射到多孔材料时,首先引起小孔或间隙的空气运动,而紧靠孔壁或纤维表面的空气因受孔壁的影响便不易运动。空气的这种粘滞性会使一部分声能变成热能。小孔中的空气和孔壁同纤维之间的热传导,也会引起热损失。这两个原因使声能衰减。影响多孔材料吸声性能的主要有如下三个参数:①流阻,它是在稳定的气流状态下,材料两面的压力差与气流通过该材料的线速度的比值;②孔隙率,它由穿透材料内部自由空间孔隙的体积与材料总体积的比值来确定,吸声材料的孔隙率一般在70%以上,多数达90%;③结构因素,它是在理论上处理材料间隙的杂乱排列而对毛细管沿厚度方向排列的模型所作的一项修正,一般在2~10之间,也有高达20~25的。材料结构的改变将导致这些参数的变化,从而改变材料的吸声特性。

多孔材料过去以棉、麻等有机纤维材料为主,大多采用玻璃棉、矿渣棉等无机松散材料。这些松散材料正逐步成为定型的吸声制品,如矿棉吸声板、玻璃棉板、玻璃棉毡等。如在这些材料表面上加一层塑料薄膜,则应不影响透声性。由无机颗粒材料制成的多孔砌块,如矿渣吸声砖、陶土吸声砖、珍珠岩制品等,也可用于吸收管道噪声。此外,有通气性能的聚氨酯泡沫塑料、海绵、木丝板和木纤维板等,也属于多孔材料。

多孔材料的吸声频谱,在材料比较薄(一般厚度为2~3厘米)的情况下,低频吸收较差。随着频率的增高,吸声系数增大,中、高频吸收比较好。材料加厚可增加吸声系数,低频吸声系数增加更多。吸声系数的增加量与材料的流阻大小有关。多孔材料背后设置空气层,效果与材料加厚相似。

由一个刚性容器和一个连通的颈所组成的结构。当声波进入孔颈时,由于孔颈的摩擦阻尼,声能变为热能,使声波衰减。当声波频率接近共振器的固有频率时,共振器孔颈处的空气柱振动特别强烈,声能吸收较大;远离共振频率时,则较小。亥姆霍兹共振器的吸声频带比较窄,在共振频率时吸收最大。它的共振频率可由下式求得:

式中为共振器空腔体积(米);为颈的实际长度(米);为颈口半径(米);为声速(米/秒)。

在穿孔薄板的背后,设置空气层或多孔材料,并固定在刚性壁上的一种吸声结构,可看成是由质量和弹簧组成的一个共振系统。当入射声波的频率和系统的共振频率一致时,穿孔板中的空气就激烈振动、摩擦,加强了吸收效应,形成了吸收峰,使声能显著衰减。远离共振频率时,则吸收作用较小。如果在穿孔板后放置多孔材料增加声阻,会使结构的吸收频带加宽。

穿孔板吸声结构是噪声控制和室内音质设计经常采用的一种吸声结构。它的吸声特性取决于穿孔板的厚度、穿孔孔径和孔距、穿孔板后空腔的深度以及底层材料等。其共振频率由下式求得:

式中为穿孔率,即板孔面积总和与板的总面积之比;为穿孔板后空腔的深度(米);为穿孔板实际厚度(米);为板孔半径(米);为声速(米/秒)。穿孔率越大,共振频率越高。如果穿孔板的穿孔率超过20~30%,穿孔板就失去共振吸声的作用。考虑了吸声效果和实用情况,一般采取:穿孔率0.5~5%,板厚1.5~10毫米,孔径4~30毫米,板后空腔深度100~250毫米。

穿孔板的声阻太小,吸收频带比较窄。为了改进吸收特性,常填加多孔材料。穿孔板主要用作饰面板,穿孔率常在25%左右。

中国在1964年首次提出“微穿孔板”的吸声结构。因为把穿孔的孔径缩小到毫米以下,可以增加孔本身的声阻,而不必外加多孔材料就能得到满意的吸声系数。为了展宽频率范围和提高吸声效果,还可以采用不同穿孔率和孔径的多层结构。中国科学院声学研究所研究了微穿孔板的吸声系数等,证明这种结构的效果很好。图表示出这种结构的吸声特性在混响室中测量的结果。

它是在不透气的薄板背后设置空气层并固定在刚性壁上的一种吸声结构。当入射声波的频率和该系统的共振频率一致时,就发生共振,由此引起的内部摩擦将声波吸收。它的吸声频率范围很窄,只能作为吸收共振频率邻近的频带为主的吸声构造。共振频率取决于薄板的尺寸、重量、弹性系数和板后空气层的厚度,并且和框架构造及薄板安装方法有关。其共振频率由下式求得:

式中为薄板的面密度(千克/米);为声速(米/秒);为空气层的厚度(米);为空气密度(千克/米)。常用的薄板材料有胶合板、纤维板、石膏板和水泥板等。在一些建筑(如剧场、混响实验室)中,则须避免薄板共振对某一频段吸声过多。

内部也有许多微小的气孔,但气孔密闭,彼此不相通。当声波入射到材料表面时,很难透入到材料的内部,而只是使材料作整体的振动。因此它的吸声频谱特性与多孔性材料有所不同,高频吸声系数很低;中、低频的吸声系数类似共振吸收,却无显著的共振吸收峰,而呈现复杂的起伏状态。

查看详情

吸声材料和吸声结构造价信息

  • 市场价
  • 信息价
  • 询价

共振吸声材料结构

  • 品种:穿孔FC板;厚度(mm):定制;说明:600×600mm;
  • m2
  • 玉音
  • 13%
  • 上海玉音声学工程有限公司
  • 2022-12-06
查看价格

共振吸声材料结构

  • 品种:金属穿孔板;厚度(mm):定制;说明:穿孔率10-25%;
  • m2
  • 玉音
  • 13%
  • 上海玉音声学工程有限公司
  • 2022-12-06
查看价格

共振吸声材料结构

  • 品种:穿孔FC板;厚度(mm):定制;说明:600×1200mm;
  • m2
  • 玉音
  • 13%
  • 上海玉音声学工程有限公司
  • 2022-12-06
查看价格

多孔吸声材料

  • 品种:玻纤吸声板;厚度(mm):定制;说明:600×600mm;
  • m2
  • 玉音
  • 13%
  • 上海玉音声学工程有限公司
  • 2022-12-06
查看价格

多孔吸声材料

  • 品种:泡沫铝吸声板;厚度(mm):定制;说明:800×2400mm,可定制;
  • m2
  • 玉音
  • 13%
  • 上海玉音声学工程有限公司
  • 2022-12-06
查看价格

探伤材料

  • 广东2019年全年信息价
  • 水利工程
查看价格

探伤材料

  • 广东2018年全年信息价
  • 水利工程
查看价格

抗裂材料

  • t
  • 珠海市2016年5月信息价
  • 建筑工程
查看价格

抗裂材料

  • t
  • 珠海市2016年3月信息价
  • 建筑工程
查看价格

抗裂材料

  • t
  • 珠海市2016年2月信息价
  • 建筑工程
查看价格

吸声材料

  • 2330×560×50
  • 2609m²
  • 1
  • 含税费 | 含运费
  • 2011-01-11
查看价格

铝条缝吸声材料

  • 墙面 58mm厚 后空腔100mm(防潮防腐、成品,中心频率/HZ:125、250、500、1000、2000、4000,吸声系数 ɑ≥:0.35、0.9、0.9、0.75、0.6、0.55)
  • 500m²
  • 2
  • 不含税费 | 不含运费
  • 2015-09-16
查看价格

铝条缝空间吸声材料

  • 吊顶 80mm厚(防潮防腐、成品,中心频率/HZ:125、250、500、1000、2000、4000,吸声系数 ɑ≥:0.61、0.65、0.72、0.72、0.7、0.38)
  • 1000m²
  • 2
  • 不含税费 | 不含运费
  • 2015-09-16
查看价格

吸声吊顶吸声体龙骨

  • -
  • 1m
  • 3
  • 中档
  • 中高档
  • 含税费 | 含运费
  • 2017-11-14
查看价格

吸声吊顶

  • 吸声棉 厚度8
  • 1m²
  • 3
  • 中档
  • 中高档
  • 含税费 | 含运费
  • 2017-11-14
查看价格

吸声材料和吸声结构常见问题

查看详情

吸声材料和吸声结构文献

吸声材料及吸声结构 吸声材料及吸声结构

吸声材料及吸声结构

格式:pdf

大小:94KB

页数: 9页

离心玻璃棉 离心玻璃棉内部纤维蓬松交错,存在大量微小的孔隙,是典型的多孔性吸 声材料,具有良好的吸声特性。离心玻璃棉可以制成墙板、天花板、空间 吸声体等,可以大量吸收房间内的声能,降低混响时间,减少室内噪声。 离心玻璃棉的吸声特性不但与厚度和容重有关,也与罩面材料、结构构造 等因素有关。在建筑应用中还需同时兼顾造价、美观、防火、防潮、粉尘、 耐老化等多方面问题。 离心玻璃棉属于多孔吸声材料,具有良好的吸声性能。离心玻璃棉能 够吸声的原因不是由于表面粗糙,而是因为具有大量的内外连通的微小孔 隙和孔洞。当声波入射到离心玻璃棉上时, 声波能顺着孔隙进入材料内部, 引起空隙中空气分子的振动。由于空气的粘滞阻力和空气分子与孔隙壁的 摩擦,声能转化为热能而损耗。 离心玻璃棉对声音中高频有较好的吸声性能。影响离心玻璃棉吸声性 能的主要因素是厚度、密度和空气流阻等。密度是每立方米材料的重量。 空气流阻是单

建筑吸声材料与吸声结构 建筑吸声材料与吸声结构

建筑吸声材料与吸声结构

格式:pdf

大小:94KB

页数: 10页

建筑吸声材料与吸声结构

吸声结构意义

无论是控制混响时间、降低噪声、改善声扩散和消除音质缺陷,都需要使用吸声结构,研究吸声结构的声学性能对建筑声学和噪声控制具有重要的现实意义。

吸声结构

吸声结构

查看详情

吸声结构分类

吸声结构可以分为三类。多孔吸声结构、共振吸声结构和特殊吸声结构。其中多孔吸声结构包括纤维,颗粒,泡沫吸声结构;共振吸声结构包括单个共振器吸声结构,穿孔板共振吸声结构;特殊吸声结构包括空间吸声器,吸声劈尖,吸声屏。

查看详情

吸声结构多孔吸声结构

吸声结构材料分类和特征

(1)多孔吸声材料的类型包括:有机纤维材料、麻棉毛毡、无机纤维材料、玻璃棉、岩棉、矿棉,脲醛泡沫塑料,氨基甲酸脂泡沫塑料等。聚氯乙烯和聚苯乙烯泡沫塑料不属于多孔材料,用于防震,隔热材料较适宜。

(2)构造特征:材料内部应有大量的微孔和间隙,而且这些微孔应尽可能细小并在材料内部是均匀分布的。材料内部的微孔应该是互相贯通的,而不是密闭的,单独的气泡和 密闭间隙不起吸声作用。微孔向外敞开,使声波易于进入微孔内。

(3)吸声特性主要是高频,影响吸声性能的因素主要是材料的流阻,孔隙 ,结构因素、厚度、容重、背后条件的影响。

吸声结构材料结构

1、穿孔板共振吸声结构

采用穿孔的石棉水泥、石膏板、硬质纤维板、胶合板以及钢板、铝板,都可作为穿孔板共振吸声结构,在其结构共振频率附近,有较大的吸收,适于中频。

2、薄膜吸声结构

包括皮革、人造革、塑料薄膜等材料,具有不透气、柔软、受张拉时有弹性等特性,吸收共振频率附近的入射声能,共振频率通常在200~1000HZ范围,最大吸声系数约为0.3~0.4,一般把它作为中频范围的吸声材料。如果在薄膜的背后空腔内填放多孔材料,这时的吸声特性取决于膜和多孔材料的种类以及薄膜的装置方法。

3、薄板吸声结构

把胶合板、硬质纤维板、石膏板、石棉水泥板等板材周边固定在框架上,连同板后的封闭空气层,构成振动系统,其共振频率多在80~300HZ,其吸声系数约为0.2~0.5,可以作为低频吸声结构。决定薄板吸声结构的吸声性能的主要因素有:

(1)薄板质量的影响

增加板的单位面积重量,一般可以使其共振频率向低频移动。而选用质量小的,不透气的材料如皮革,有利于共振频率向高频方向移动。

(2)背后空气层厚度的影响

改变空气层的厚度和改变板的质量一样,共振频率也会发生变化。在空气层中填充多孔材料,可使共振频率附近的吸声系数有所提高。

(3)板后龙骨构造及板的安装方式的影响

由于薄板吸声结构有一定的低频吸声能力,而对中高频吸声差,因此在中高频时就具有较强的反射能力。能增加室内声能的扩散。通过改变龙骨构造何不同的安装方法,设计出各种形式的反射面,扩散面和吸声---扩散结构。

5、特殊吸声结构

(1)帘幕

帘幕是具有通气性能的纺织品,具有多孔材料的吸声特性,由于较薄本身作为吸声材料使用是得不到大的吸声效果的。如果将它作为帘幕,离开墙面或窗洞一定距离安装,恰如多孔材料的背后设置了空气层,因而在中高频就能够具有一定的吸声效果。当它离墙面1/4波长的奇数倍距离悬挂时就可获得相应频率的高吸声量。

(2)空间吸声体

将吸声材料作成空间的立方体如:平板形,球形,圆锥形棱锥形或柱形,使其多面吸收声波,在投影面积相同的情况下,相当于增加了有效的吸声面积和边缘效应,再加上声波的衍射作用,大大提高了实际的吸声效果,其高频吸声系数可达1.40.在实际使用时,根据不同的使用地点和要求,可设计各种形式的从顶棚吊挂下来的吸声体。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639