选择特殊符号
选择搜索类型
请输入搜索
一种高效太阳能荧光聚光器 涉及太阳能聚光器领域。通过在荧光平面光波导上下分别设置选择性反射层和高反射薄膜构成两级荧光收集结构,以使太阳能收集器结构轻薄、安装灵活且具有很高的荧光收集效率。本发明主要包括玻璃盖板、荧光平面光波导、底板、侧边挡板和侧边开口,其特征在于:玻璃盖板下表面设置选择性反射层;底板上表面和侧边挡板内表面都设置高反射薄膜;荧光平面光波导与玻璃盖板之间及荧光平面光波导与底板之间均留有空气薄层;侧边挡板上留有侧边开口。本发明可作为传统太阳能收集器的替代产品,能够运用在太阳能供暖(热水)系统、太阳能光伏发电系统及其它太阳能系统上。
一种平面荧光聚光器 包括荧光物质和平面光波导,所述荧光物质为铜铟硫量子点材料,所述平面光波导为高分子聚合物,可以是聚甲基丙烯酸甲酯、聚碳酸酯、聚二甲基硅氧烷或聚乙烯等。本发明还公开了该平面荧光聚光器的制备方法。本发明首次将CIS应用到平面荧光聚光器领域,可以更大程度发挥出铜铟硫量子点的独特优势,使得铜铟硫量子点具有更广阔的应用前景。由于CIS量子点是一种光热稳定性好、高效荧光且绿色环保型量子点荧光材料,将它与平面光波导技术和太阳能电池相结合,构造出一种新型LPC,不仅可以加快推广CIS材料的广泛应用,同时还可以改善太阳能发电系统的光电转换效率,将产生巨大的经济效益。
实用新型专利 公开了一种采用无镉量子点平面荧光聚光器的太阳能电池板,包括量子点荧光聚光器和太阳能电池片,所述量子点荧光聚光器呈板状,所述太阳能电池片至少设置有一个且粘接在量子点荧光聚光器的侧面,所述量子点荧光聚光器的其余侧面和底面粘接有反射板。该专利由于在所述量子点荧光聚光器的其余侧面和底面粘接有反射板,通过反射板的反射作用,将相应侧面和底面射出的光线反射回量子点荧光聚光器内,从而提高太阳能利用率和光电转换效率。此外,由于在粘接于量子点荧光聚光器底面的反射板上连接散热器,有利于太阳能电池板及时散热,延长其使用寿命。
太阳光聚光技术有聚焦型、反光型和荧光聚光三种,其中荧光聚光技术实现了高量子效率的荧光的聚光效果,从而最大程度提高了单位面积的太阳能电池的光电转换效率。荧光聚光技术能利用任意角度入射的太阳光,无需配置太阳跟踪装置,相比普通太阳能电池或者聚焦型和反光型的太阳光聚光技术,都能降低高效率的单晶硅等太阳能电池的发电成本。
为了有效利用太阳从紫外至红外区的光,纳米微粒特别是量子点材料是当前光电材料与器件的研究热点。许多纳米材料在紫光或紫外光激发下可以发出波长在可见至红外区的光,晶体硅太阳能电池对这部分光有较高的量子效率。将此类纳米材料应用到太阳能光伏发电系统中,可以提高太阳能的利用率,降低太阳能光伏发电系统成本。由此发展出了量子点荧光聚光器技术。
不聚光和灯罩没关系的。和灯里面的反光碗有关系的,灯光是靠反光碗才能聚光!灯罩老化严重会遮挡灯光。 希望能帮到 你
LED灯 聚光方式1.把二极管做成球泡,通过球面聚光2.二极管发光后经抛物面反光聚光
1000倍聚光的光伏聚光器的非成像设计
为了设计一种应用于高倍聚光光伏系统中的具有高光学效率、轻量化、低高宽比和良好的光照均匀性的高倍聚光器,采用SMS(simultaneous multiple surfaces)设计方法,应用光束扩展原理和边界光线原理,同时设计具有全内反射功能的光学表面和具折射功能的光学表面,编写数值计算程序,优化各光学表面的轮廓,完成了包含主透镜和二次透镜的高倍聚光器的设计.优化后的高倍聚光器具有1 000倍聚光、小于0.4的高宽比和1.5°的集光角.光线模拟分析结果表明:该聚光器可实现高于85%的光学效率和很好的光照均匀性,应用于高倍聚光光伏系统时易于封装,且在配置两轴跟踪系统的条件下可实现高效率聚光.
单轴旋转跟日式多平面镜反射聚光器的设计
主要设计了一种新型的单轴旋转跟日式多镜面聚光系统,该系统与目前常见的聚光器相比,价格低廉、易于维护,仅通过单轴的转动来实现反射聚光,耗能较小。对系统中各镜面的位置及尺寸进行了详细的讨论和计算,并通过实验验证了其可行性和有效性,该方法能实现4倍以上的聚光,能有效减少跟踪系统消耗的能量,从而提高整个跟踪聚光系统的性价比。
根据聚焦特性,聚光器可分为点聚光器和线聚光器。线聚光器,包括条形透镜、抛物槽、线聚光组合抛物面等。点聚光器也叫轴向聚光器,在这类聚光器中,用以聚光的透镜或反射镜和太阳能电池处于同一条光学轴线上。不同的聚光器应用于太阳能电池聚光系统中具有各自不同的特点。
根据光学原理可分为:折射聚光器、反射聚光器、混合聚光器、热光伏聚光器、荧光聚光器、全息聚光器等。其中混合聚光器利用折射、反射和内部反射达到聚光。
热光伏聚光器工作原理是:太阳把辐射器加热到高温,完成光热转换,辐射器再发出辐射到太阳能电池上,电池不能利用的长波辐射重新回到辐射器,完成光电转换,理论上可以达到很高的效率。荧光聚光器和光导纤维聚光器是两种尚未成熟的技术。反射聚光器包括平板、抛物槽、组合抛物面等,用在光伏反射聚光器中两种主要反射镜材料是镀银玻璃和镀铝面。折射聚光器的元件可以是菲涅尔或普通透镜。
①槽式平面镜聚光器。槽式平面镜聚光器是用平面镜以适当的角度构成槽壁,在槽底放置太阳能电池,这是一种较易制作的反射式聚光器,只需用普通的平面镜即可,它对跟踪要求低,可采用常规电池,聚光倍数也低,只有2-6倍。还有一种方法,即太阳能电池方阵的V型槽式安装法,用普通水泥墙壁作反射体,在适当的安放角度下,可使方阵的输出提高20%左右。
②组合平面镜反射器。组合平面镜反射器是采用许多平面镜把阳光反射到一个共同的目标上,在目标上安放吸收器,取得高温和高光强。这种聚光器是在大面积范围铺设平面镜,可以高倍聚光得到很大的功率和极高温度,属于“塔式太阳能电站”。这种聚光器占地面积极大,仅能在山地或荒地建立。
③双曲面聚光器。双曲面与抛物面一样,即也具有一个共同的焦点,当一束阳光平行入射,双曲面反射聚光器将其会聚成一个光点,如果反射面做成正确的双曲抛物面,则聚光倍数可达1000倍。但这种聚光器加工难度较大,外形要求严格,跟踪要求也高,一般使用在水平较高的系统中。太阳光被会聚到太阳能电池上。伞式太阳灶是这种聚光器的一种近似结构,一般是在近似双曲抛物面的衬底上,贴上许多小块平面镜。
④抛物面聚光器,抛物面反射镜是能将平行于镜面光轴的光线会聚于焦点的镜面。因此,当太阳光投向一抛物面反射镜表面时,在其焦点处可形成能量密度极高的会聚光斑,这就是抛物面聚光器用于太阳能聚光的光学原理。在槽形抛物面反射镜中,接收器可为圆管或条形平板,聚焦旋转抛物面聚光器的吸收器可以是球体、圆板。现以槽形抛物面反射镜为例来分析抛物面反射镜的聚光性能,因为应用在聚光太阳能电池中,接收器为条形平板。
⑤复合抛物面(CPC)聚光器。复合抛物面聚光器,是由两片槽形抛物面反射镜以及底部的接收器构成。这种聚光器只聚光不成像,因而不需要跟踪装置,只需要根据季节变化作少量倾斜度的调整。
折射式聚光器是利用光在不同介质的界面发生折射的原理制成的透射式聚光器。这类聚光器的典型例子是凸透镜,但是,在太阳能利用中,如用大型凸透镜聚光,其中心部分很厚。比如,要得到一个焦距等于50cm,口径为50cm的透镜,就需要一个厚度为25cm的玻璃半球。这种笨重的透镜实际上是无法使用的,因此,在聚光太阳能电池方阵中,绝大部分采用菲涅尔透镜。
菲涅尔透镜,实际上是对球面透镜进行微分切割,取出对光学折射无作用的部分而成。为加工方便,还进行了整平,使球面透镜变成一个带有同心楞状条纹的平板,大大降低了重量和体积。菲涅尔透镜也可以做成线聚焦的,这种透镜是由一系列对称分布的平行楞状条纹组成。与传统的光学玻璃透镜相比,将菲涅尔透镜用于太阳能电池聚光有很多优点。 2100433B
聚光器安装在载物台下,其作用是将光源经反光镜反射来的光线聚焦于样品上,以得到最强的照明,使物象获得明亮清晰的效果。聚光器的高低可以调节,使焦点落在被检物体上,以得到最大亮度。一般聚光器的焦点在其上方1.25mm处,而其上升限度为载物台平面下方0.1mm。因此,要求使用的载玻片厚度应在0.8—1.2mm之间,否则被检样品不在焦点上,影响镜检效果。聚光器前透镜组前面还装有虹彩光圈,它可以开大和缩小,影响着成像的分辨力和反差,若将虹彩光圈开放过大,超过物镜的数值孔径时,便产生光斑;若收缩虹彩光圈过小,分辨力下降,反差增大。因此,在观察时,通过虹彩光圈的调节再把视场光阑(带有视场光阑的显微镜)开启到视场周缘的外切处,使不在视场内的物体得不到任何光线的照明,以避免散射光的干扰。
聚光集热器由聚光器和接收器组成。聚光器是汇聚阳光的光学部件。接收器是吸收太阳辐射并转换成别种能量的部件,接收器可能包括吸收器,盖层和绝热构造。
聚光器有成像的和非成像的两种类型。所谓非成像聚光器就是在吸收器上不产生太阳像,来自太阳的辐射分布在吸收器的各部分。成像聚光器则是在吸收器上要形成太阳像。成像聚光器通常要求跟踪太阳,而且聚光器的制造精度和跟踪精度都要求比较高。