选择特殊符号
选择搜索类型
请输入搜索
放射性同位素电池也被叫做放射性同位素温差发电器或原子能电池。这种温差发电器是由一些性能优异的半导体材料,如碲化铋、碲化铅、锗硅合金和硒族化合物等,把许多材料串联起来组成。另外还得有一个合适的热源和换能器,在热源和换能器之间形成温差才可发电。
第一个放射性同位素电池是在1959年1月16日由美国人制成的,它重1800克,在280天内可发出11.6度电。在此之后,核电池的发展颇快。
1961年美国发射的第一颗人造卫星"探险者1号",上面的无线电发报机就是由核电池供电的。1976年,美国的"海盗1号"、"海盗2号"两艘宇宙飞船先后在火星上着陆,在短短5个月中得到的火星情况,比以往人类历史上所积累的全部情况还要多,它们的工作电源也是放射性同位素电池。因为火星表面温度的昼夜差超过100℃,如此巨大的温差,一般化学电池是无法工作的。
中国第一个钚-238同位素电池
中国第一个钚-238同位素电池已在中国原子能科学研究院诞生了,同位素电池的研制成功填补了中国长期以来在该研究领域的空白,标志着中国在核电源系统研究上迈出了重要的一步。同位素电池是利用放射性同位素衰变过程释放的热能,通过热电偶转换成电能,具有尺寸小、重量轻、性能稳定可靠、工作寿命长、环境耐受性好等特点,能为空间及各种特殊、恶劣环境条件下的高空、地面、海上和海底的自动观察站或信号站等提供能源。同位素电池在美、俄等国已实际应用,用于航天器的能源供应 。
随着中国空间探测的进一步发展(包括"登月计划"的启动)以及未来深空探测的需求,为中国航天器提供稳定、持久的能源已提到议事日程上来,作为迄今为止航天器仪器、设备最理想供电来源的同位素电池成为航天技术进步的重要标志,掌握同位素电池制备的一系列关键技术并具备自主研制生产能力显得尤为重要。2004年,原子能院同位素所承担了"百毫瓦级钚-238同位素电池研制"任务,在两年时间里要完成总体设计和一系列相关工艺研究,研制出样品 。
同位素所和协作单位并按制定的研究方案开展了大量的模拟实验、示踪实验、热实验等工作。最终检测表明电池性能完全达到了技术指标要求,辐射防护检测的各项指标均符合国家安全要求。中国第一个钚-238同位素电池诞生了。中国第一个钚-238同位素电池的研制成功是中国在核电源系统研究领域的重大突破,为继续探索、开发空间能源打下了坚实的基础 。
放射性同位素电池的热源是放射性同位素。它们在蜕变过程中会不断以具有热能的射线的形式,向外放出比一般物质大得多的能量。这种很大的能量有两个令人喜爱的特点。一是蜕变时放出的能量大小、速度,不受外界环境中的温度、化学反应、压力、电磁场的影响,因此,核电池以抗干扰性强和工作准确可靠而著称。另一个特点是蜕变时间很长,这决定了放射性同位素电池可长期使用。放射性同位素电池采用的放射性同位素来主要有锶-90(Sr-90,半衰期为28年)、钚-238(Pu-238,半衰期 89.6年)、钋-210(Po-210半衰期为138.4天)等长半衰期的同位素。将它制成圆柱形电池。燃料放在电池中心,周围用热电元件包覆,放射性同位素发射高能量的α射线,在热电元件中将热量转化成电流。
放射性同位素电池的核心是换能器。目前常用的换能器叫静态热电换能器,它利用热电偶的原理在不同的金属中产生电位差,从而发电。它的优点是可以做得很小,只是效率颇低,热利用率只有10%~20%,大部分热能被浪费掉。 在外形上,放射性同位素电池虽有多种形状,但最外部分都由合金制成,起保护电池和散热的作用;次外层是辐射屏蔽层,防止辐射线泄漏出来;第三层就是换能器了,在这里热能被转换成电能;最后是电池的心脏部分,放射性同位素原子在这里不断地发生蜕变并放出热量。
从目前的核裂变和核聚变理论来看是不可以的,核反应有一个最小反应物质的质量要求。 体积(质量)过小是不会发生核反应的
天能电池好,汇源天能也是 天能集团生产的 价位比天能电池低40元左右
充电电池是充电次数有限的、可充电的电池,它需要配合充电器使用。市场上一般卖5号、7号和1号充电电池。充电电池的好处是经济、环保、电量足、适合大功率、长时间使用的电器(如随身听、电动玩具等)。
大海的深处,也是放射性同位素电池的用武之地。在深海里,太阳能电池根本派不上用场,燃料电池和其他化学电池的使用寿命又太短,所以只得派核电池去了。例如,现在已用它作海底潜艇导航信标,能保证航标每隔几秒钟闪光一次,几十年内可以不换电池。人们还将核电池用作水下监听器的电源,用来监听敌方潜水艇的活动。还有的将核电池用作海底电缆的中继站电源,它既能耐五六千米深海的高压,安全可靠地工作,又少花费成本,令人十分称心。
在医学上,放射性同位素电池已用于心脏起搏器和人工心脏。它们的能源要求精细可靠,以便能放入患者胸腔内长期使用。以前在无法解决能源问题时,人们只能把能源放在体外,但连结体外到体内的管线却成了重要的感染渠道,很是使人头疼。现在可好了,眼下植入人体内的微型核电池以钽铂合金作外壳,内装150毫克钚238,整个电池只有 160克重,体积仅 18立方厘米。它可以连续使用10年以上。
日本原子能研究开发机构2006年预算将
[美国《核新闻》2006年5月刊报道]据日本原子力产业会议(JAIF)报道,日本原子能研究开发机构(JAEA)2006财政年度的总预算是2004亿日元(约17亿美元),比前一年降低4.3%,但快增殖反应堆项目的预算却增加了12.7%,达到346亿日元(约3亿美元)。
从地震和工程地质的因素评价原子能电站的安全性
从地震和工程地质的因素评价原子能电站的安全性
"放射性同位素温差发电器"也被叫做"核电池"或"原子能电池"。这种温差发电器是由一些性能优异的半导体材料,如碲化铋、碲化铅、锗硅合金和硒族化合物等,把许多材料串联起来组成。另外还得有一个合适的热源和换能器,在热源和换能器之间形成温差才可发电。
两片不同材料(半导体或金属)具有温差的物体接近时,有两种方式可以形成"热"传递。或者说形成分子运动速度传递。第一是分子碰撞,温度低的速度慢,能量低。温度高的速度快。两者结合在一起,最终形成"中和"。第二种是"热辐射",也就是"电磁辐射"。只是这种电磁辐射的波长要比可见光长一些,但温度高时发出的辐射就是"可见光"了。所以说在空间内"电磁辐射"是能量传递的最基本形式。物体只要在绝对零度以上就能向外界发射"电磁辐射"线。只是不同物体在不同温度下,电磁辐射的强度不同。温差就是指两种物体在接触时电磁辐射强度有差别。即物体间存在电磁场强度差别,即存在"电位差"或者说存在"电动势",导线可以理解为"等势体"。这样温度不同的物体间接一导线,即会有"电流"产生。
放射性同位素温差发电器的热源是放射性同位素。它们在蜕变过程中会不断以具有热能的射线的形式,向外放出比一般物质大得多的能量。这种很大的能量有两个令人喜爱的特点。一是蜕变时放出的能量大小、速度,不受外界环境中的温度、化学反应、压力、电磁场的影响,因此,放射性同位素温差发电器以抗干扰性强和工作准确可靠而著称。另一个特点是蜕变时间很长,这决定了核电池可长期使用。放射性同位素温差发电器采用的放射性同位素来主要有锶-90(Sr-90,半衰期为28年)、钚-238(Pu-238,半衰期89.6年)、钋-210(Po-210半衰期为138.4天)等长半衰期的同位素。将它制成圆柱形电池。燃料放在电池中心,周围用热电元件包覆,放射性同位素发射高能量的α射线,在热电元件中将热量转化成电流。
放射性同位素温差发电器的核心是换能器。目前常用的换能器叫静态热电换能器,它利用热电偶的原理在不同的金属中产生电位差,从而发电。它的优点是可以做得很小,只是效率颇低,目前热利用率只有10%~20%,大部分热能被浪费掉。
温差电技术性能稳定、无需维护的特点使其在发电和输送电困难的偏远地区发挥着重要的作用, 已用于极地、沙漠、森林等无人地区的微波中继站电源、远地自动无线电接收装置和自动天气预报站、无人航标灯、油管的阴极保护等. 世界最大的温差发电机生产商--美国Global Thermoelectric Inc制造的用于管道监控、数据采集、通讯和腐蚀防护的温差发电设备, 输出功率可达5000W. 前苏联从1960年代末开始先后制造了1000多个放射性同位素温差电机, 广泛用于灯塔和导航标志, 平均使用寿命长于10年. 该类型发电机以Sr90为热源, 可稳定提供7~30V, 80W的输出
长久以来, 因为受到生产成本和转换效率的限制, 温差电技术的应用一直局限于高科技和军事、航天领域. 最近, 由于化石能源数量的日益减少和化石能源燃烧所引起的环境恶化问题的逼近, 人们意识到利用低品位和废热进行发电对解决环境和能源问题的重要性. 另外, 可供使用的热源的广泛性和廉价性大大增强了温差发电方式的商业竞争性. 我们知道, 发电成本主要由运行成本和设备成本组成. 运行成本取决于转换效率和原料, 设备成本决定于产生额定输出电力的装置. 虽然热电转换模块的成本很高, 但由于利用低品位和废热发电的原料费用极少, 几近为零, 运行成本很低, 因此发电总费用降低, 使得温差发电可与现存发电方式进行商业竞争. 日本近几年开展了一系列以"固体废物燃烧能源回收研究计划"为题的政府计划, 研究用于固体废物焚烧炉的废热发电技术, 将透平发电机和温差发电机结合起来, 实现不同规模垃圾焚烧热的最大利用, 使垃圾真正成为可供利用的资源. 继日本之后, 2003年11月美国能源部宣布资助太平洋西北国家实验室、密西根技术大学、匹兹堡PPG 工艺有限公司等单位, 重点支持他们在高性能热电转换材料和应用技术方面的开发, 其主要应用对象是工业生产中的尾气热和其他构件中的废热和余热利用.
在医学上,放射性同位素电池已用于心脏起搏器和人工心脏。它们的能源要求精细可靠,以便能放入患者胸腔内长期使用。以前在无法解决能源问题时,人们只能把能源放在体外,但连结体外到体内的管线却成了重要的感染渠道,很是使人头疼。现在可好了,眼下植入人体内的微型核电池以钽铂合金作外壳,内装150毫克钚238,整个电池只有 160克重,体积仅 18立方毫米。它可以连续使用10年以上。