选择特殊符号
选择搜索类型
请输入搜索
中波红外图像采集。
像数:320x256 探测元间距:30μm 响应波段3.7μm-4.8μm 探测器材料:碲镉汞 像元噪声等效温差 (均值)50Hz帧频时16mK 帧频:25到50Hz 工作温度范围-30~ 50℃。
在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射能量的大小及其按波长的分布 ―― 与它的表面温度有着十分密切的关系。因此,通过对物体自身辐射的红外能量的测量,...
你好,红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个...
红外线测温仪英文译为:Infrared Thermometer . 红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能...
红外成像技术在军事上的应用
红外成像技术的发展及应用 阅读人数: 13人页数: 7 页 yangfamingsg 红外成像技术的发展及应用 热成像仪是从对红外线敏感的光敏元件上发展而来,但是光敏元件只能判断有没有红外线, 无法呈现出图像。 在第二次世界大战中交战各国对热成像仪的军事用途表现出了兴趣, 对其 进行了零星的研究和小规模应用 ,1943 年美国就与 RNO 合作生产了一款代号 M12 的机型, 其功能和外观已经能看出热成像仪的雏形, 这应该算是最找的一款热成像仪, 算是热成像仪 的鼻祖。 1952 年,一款非常重要的材料研 -锑化铟被开发出来,这种新的半导体材料促进了红外线热 成像仪的进一步发展。不久之后,德州仪器和 RNO 公司联合开发出了具有实用价值的前视 红外线( Forward looking infrared)热成像仪。这一系统采用的是单原件感光,利用机械装 置控制镜片转动,将光线反射到感光元件
红外热成像
[摘要 ] 红外热成像摄像机不仅可以实现真正意义上的 24h 全天候监 控,其在恶劣气候条件下优秀的监控能力、精准读取目标温度、超远 距离探测和超强识别隐蔽目标能力,为安防视频监控的应用领域打开 了全新的局面。 红外热成像技术的原理 近年来,国际、国内社会维稳形势严峻,安防市场快速发展,行业 内竞争日趋激烈,各大安防企业纷纷寻求新场景、新技术、新应用以 增强自身行业竞争力。传统可见光摄像机在超低照度、高清视频、智 能分析、透雾技术等方面已发展到了比较成熟的阶段,基于可见光监 控原理,传统可见光摄像机在恶劣气候 (如大雾、雨雪等 )、无光照还有 超远距离等使用环境下仍然无法满足部分特殊行业的需求。 随着视频监控功能不断完善、应用领域的不断扩展,红外热成像 技术已成为各大安防企业争相发展的技术新宠儿。红外热成像摄像机 不仅可以实现真正意义上的 24h 全天候监控,其在恶劣气候条件下优 秀的监控
历史
中波波段是无线电通信发展初期使用的波段之一,1901年12月12日,G.马可尼第一次横越大西洋的无线电传输试验使用的就是800kHz的中频信号。第一次世界大战期间,所有参战的大国都使用了长波和中波无线电通信。1920年500~1 500kHz的中波波段被划为国内无线广播使用,此后中波调幅广播得到了快速发展,成为世界上覆盖面最广、收听率最高的音声广播业务。随后中波调幅立体声广播也有了很大发展。1927年美国建立的第一座A-N中频无线电导航台,可产生四条辐射状定位线。飞机沿定位线航行时机载接收机将收到连续的信号音,若偏离航线飞行,在航线两侧将可分别收到莫尔斯码A或B,自20世纪70年代末起,中频高精度无线电定位系统发展也很快。它的发展方向是与新的通信技术及电子计算机技术等相结合,以增大作用距离,提高定位精度和自动化程度。
研究现状2.1国外研究现状
国际电联将30~300kHz 频段规定为低频(LF),300~3000kHz 频段规定为中波(MF)。早在无线电应用的初期,除了民用广播以外,国外已经将上述频段的无线电通信应用于舰船通信联络。现在国外舰船和民用船舶大多数装备有中高频电台,与高频通信相比,中波无线电波传播较稳定,但是通信距离有限,要求的发信功率比较大,天线结构也比较大,所以一般用于岸对船的通播。也可以作为岸和大、中型舰船及大型船舶间中、近距离的应急通信。根据DRM(世界数字广播组织)组织2005 年4 月底公布的资料,全天24 小时连续播出DRM 数字节目的频率有11 个,其中中波为5 个。5 个中波电台主要集中在德国,最大的发射功率为80kW,最小为0.1kW。其中在柏林的VOR 中波电台使用693kHz 的频率(发射功率80kW),模拟节目与DRM 数字节目同播(simulcast)。除了全天候DRM 运行的发射机外,还有34 部发射机每天以DRM 式运行2~14 小时,32 部发射机每天以DRM 方式运行0.5~1 小时。这些发射机中,中波最大发射功率为240kW(卢森堡RTL 电台,1440kHz,德语节目,覆盖欧洲);国外海军一直将中波作为舰船中的辅助和应急通信手段。除了作为通信应用外,中波也一直是船舶和飞机的导航用频率,在大型水面舰艇特别是航母将舰载机作为主要战斗力的情况下,中波的地位和作用更加突出。
2.2国内研究现状
2004 年9 月9 日~15 日,江苏省广播电视总台中波发射台和法国泰雷兹公司联合进行了中波数字广播DRM实验。实验在江苏省南京市江东门发射台进行。实验使用法国泰雷兹公司生产的TMW 2010 M2W 10kW 中波调幅广播发射机,工作频率为1053kHz,使用68m 拉线式桅杆天线。我国中波主要应用于电台广播,我国中波广播现行的技术政策是:大、中、小功率相结合,以中小功率为主,为解决频率分配不足的问题,还实行地波覆盖同步广播,组成单频网(Single Frequency Networks)。国内广播以中波为主,是因为接收机廉价,为广大用户普遍使用。近年来,中波广播大功率发射台越建越多,功率越来越大,但广播效果却改善不大,听众人数不升反降。造成的原因主要有3 个: 1)调频广播发展迅速,挤压了中波广播的份额; 2)各种无线电波干扰了中波信号; 3)城市的建设阻挡了电磁波信号的传播。在民船通信应用领域,我国大、中型民用船舶近年逐渐安装国外引进的和国内生产的中波电台,用于岸船间、船船间的应急、救生通信。广州无线电厂按国际标准研制生产的DH-1A 型窄带直接印字报终端和CB-2 型航行警告和气象预报接收机已在我国部分民用船舶上安装使用。
定义
中波通信利用波长为1000~100m(频率为300~3 000kHz)的电磁波进行的无线电通信,又称中频通信。在白天电离层D层对中波吸收强烈,难以利用天波传播,只能靠地波传播。夜间D层消失,E层的电子密度下降,高度上升,吸收减小,电磁波可由E层反射,此时中波除靠地波传播外,还靠天波传播。
中波靠地面波和天空波两种方式进行传播。在传播过程中,地波和天波同时存在,有时会给接收造成困难,故传输距离不会很远,一般为几百公里。主要用作近距离本地无线电广播、海上通信,无线电导航以及飞机上的通信等。
特点
(1)中波传播的日变化规律是:白天场强完全由地波分量决定,夜间则增加了天波分量。根据天波与地波场强的相对大小,可分为以下三个区域:离发信台较近的场稳定区。此区域接收点的场强取决于地波,基本不受天波影响,广泛用于无线电广播。离发信台较远的衰落区。此地区,白天只有地波到达,夜间则出现天波,且强度可与地波相比,接收点的场强是二者的合成。由于电离层的电子密度与高度随机变化,天波行程与强度也随之改变,从而造成合成场强的随机起伏,起伏间隔在数秒到数十秒范围内,场强变化可达几十倍,这种现象称为衰落。离发信台更远的跨越区。此地区地波已不能到达,白天收不到信号,夜间则可以收到较强的但也存在较小衰落的天波信号。
(2)中波信号场强的年变化很小。地波传播几乎不受季节变化的影响,反射天波的E层夜间年变化也很小。但在夏秋雷雨季节天电噪声电平增高,使得信噪比降低,通信效果变差。
(3)11年为周期的太阳活动对中波通信影响不大。
(4)电离层骚扰(即电离层暴变)对中波通信影响也很小。
(5)中波通信常出现卢森堡效应。其现象是:在接收甲台天波信号时受到不同频率的乙台信号干扰,甲台停止发信乙台信号也随之消失。产生这种现象的原因是:乙台发射较强的调幅波通过电离层引起某个区域等效电参数随电波的幅度变化,导致通过此区域的甲台信号的振幅也随之改变。卢森堡效应就是中波的交叉调制现象。干扰台的功率越大,载波频率越低,电离层的等效电参数变化也越大,交叉调制效应就越严重。1933年埃因霍温在荷兰接收来自瑞士的中波电台信号时,首次发现这种效应,由于干扰台是卢森堡电台,故称卢森堡效应。
用途
根据国际电信联盟(ITU)《国际无线电规则》的频率划分,526.5~1 606.5kHz频段的中波用作调幅广播;广播频段以下的中波常用于中近程无线电导航,飞机、舰船的无线电通信及军事地下通信等;广播段以上的中波除了也用作飞机、舰船通信等外,还用于无线电定位,在军事上还常用于近距离的战术通信。
1.正装机芯
2.反装机芯
Spotlight 400傅里叶变换中红外/近红外成像系统技术参数: 7800~720 cm-1 成像模式/7800~600 cm-1 单点模式;红外图像光谱采集速度170张/秒,空间分辨率6.25x6.25μm和25x25μm(单点模式下用光圈定义测量的样品面积),专利的Z形折叠光学系统允许改变采样时的像素分辨率;由16个带有镀金信号线的独立优质MCT红外检测器元件合并成为的线阵列检测器(一排窄带的MCT阵列检测器和一个100微米中带MCT单点检测器),线性模式扫描,以100%曝光系数记录数据;图像ATR(衰减全反射)附件,适应各种各样的样品类型,采用特别优化的锗晶体来采集红外图像光谱信号,可以测量500μm直径的样品,空间分辨率突破常规红外图象的物理限制达到1.56μm;大样品台使采样区域增至160x60mm,允许一次测试多个样品或测试面积非常大的样品;样品台移动精度0.1μm,最多每秒可改变五次移动方向,位置重现性可达到0.001%;可见光CCD照相机提供高质量的可视图像,二向色镜允许红外光和可见光共用一条光路,消除了光路校正的问题,LED 发光二极管照明提供了极佳的可视图像质量。