选择特殊符号
选择搜索类型
请输入搜索
位置差分和伪距差分,能满足米级定位精度,已广泛应用于导航、水下测量等。而载波相位差分,可使实时三维定位精度达到厘米级。
载波相位差分技术又称RTK(Real Time Kinematic)技术,是实时处理两个测站载波相位观测量的差分方法。载波相位差分方法分为两类:一类是修正法,另一类是差分法。所谓修正法,即将基准站的载波相位修正值发送给用户,改正用户接收到的载波相位,再解求坐标。2100433B
有人说,变压器原边和副边的相位是差180°电角度的,理由是:原边是动电生磁,电压与电流在电感线圈中有90°电角度的相位差,而铁芯的磁场又是和原边电流同步的(同相位),副边感应的电动势是动磁生电,副边的...
单相变压器初级与次级相位与同名端有关,同名端同相(相位差0度),异名端反向(180度)。按你图中接法原理实现升压,就是要一名段相接。如图所示,图中的*号为同名端。
两个信号之间的相位差可以用李萨如图形法测量。只要示波器有X和Y轴输入就可以。(绝大多数单踪示波器都有的)而且最好两个信号都是正弦波。对于三个信号,那就分两次测吧。
载波相位差定位在卫导天线相位中心测量中的应用
载波相位差定位技术在静态和动态卫导定位中有很高的精度,本文将载波相位差定位技术应用到天线相位中心偏差的测量中,通过将问题分解,逐步测量出相位中心的水平偏差和垂直偏差。搭建了测量环境,给出测量过程的公式,最终以某天线为例,给出了测量实例,测量结果精度达到\"毫米级\"。为卫导天线相位偏差的测量提供了参考。
载波相位差定位在卫导天线相位中心测量中的应用
载波相位差定位技术在静态和动态卫导定位中有很高的精度,本文将载波相位差定位技术应用到天线相位中心偏差的测量中,通过将问题分解,逐步测量出相位中心的水平偏差和垂直偏差.搭建了测量环境,给出测量过程的公式,最终以某天线为例,给出了测量实例,测量结果精度达到\"毫米级\".为卫导天线相位偏差的测量提供了参考.
正弦量正交(90°)和反相(180°)都是特殊的相位差。2100433B
多路载波电报机的每一载波电报电路由发送和接收两部分组成。发送部分主要包括调制器、放大器和发送带通滤波器。
电报机发出的直流电报信号通过调制器对该路的载波频率进行调制,使直流信号转换成音频交流信号,经放大器放大,并由发送带通滤波器去除不需要的频率分量,然后与其他各路发送部分输出的交流信号集合,通过音频话路发送到对方载波电报机相应一路(同样频率的一路)的接收部分。
每路接收部分有接收带通滤波器,其作用是在所收到的多路集合信号中选出所需一路的信号,经放大器放大后,由解调器把音频交流信号还原成直流电报信号。n路音频载波电报机就有n个发送部分和n个接收部分,分别工作于n个不同的中心频率(载波频率)。
多路载波电报机中相邻两路中心频率的间隔一般为180赫或120赫。
两个频率相同的交流电相位的差叫做相位差,或者叫做相差。 这两个频率相同的交流电,可以是两个交流电流,可以是两个交流电压,可以是两个交流电动势,也可以是这三种量中的任何两个。两个同频率正弦量的相位差就等于初相之差。是一个不随时间变化的常数。也可以是一个元件上的电流与电压的相位变化。任意一个正弦量y = Asin(wt j0)的相位为(wt j0),两个同频率正弦量的相位差(与时间t无关)。设第一个正弦量的初相为 j01,第二个正弦量的初相为 j02,则这两个正弦量的相位差为j12 = j01 - j02。