选择特殊符号
选择搜索类型
请输入搜索
内容简介
本书是在对目前我国电光源产业现状进行分析以及对未来国内外市场发展情况进行预测的基础上,对转型方案和转型试点的效果进行总结,对我国白炽灯生产企业的转型方向、方式、步骤以及所面临的形势和问题进行分析汇总,并进一步提出了我国白炽灯产业转型的政策建议,希望能够为政府有关部门提供参考,为生产企业开展转型工作提供借鉴和参考。
1 上海亚明灯泡厂在照明行业内可称得上是一块金字招牌。公司前身为1923年创办的“中国亚浦尔电器股份有限公司”,是中国第一家民族灯泡厂。 2 长春市灯泡...
卤钨灯顾名思义,便是灯体的填充气体内含有部分卤族元素或卤化物的充气白炽灯。在适当的温度条件下,灯丝的高温会造成钨的蒸发,从灯丝蒸发出来的钨在泡壁区域内与卤素物质反应,形成挥发性的卤钨化合物。下面,就...
卤钨灯顾名思义,便是灯体的填充气体内含有部分卤族元素或卤化物的充气白炽灯。在适当的温度条件下,灯丝的高温会造成钨的蒸发,从灯丝蒸发出来的钨在泡壁区域内与卤素物质反应,形成挥发性的卤钨化合物。下面,就带...
近日,由国家发展改革委、商务部、海关总署、国家工商总局、国家质检总局、国务院机关事务管理局联合主办,中国逐步淘汰白炽灯、加快推广节能灯项目办承办的“告别白炽灯泡·点亮绿色生活”政府在行动主题宣传活动在中国工程院举行,来自政府部门、行业协会、研究机构、企业、媒体等100余名代表参加活动。国家发展改革委副主任解振华、联合国驻华协调员兼联合国开发计划署驻华代表罗黛琳女士、国家工商总局副局长甘霖、国家质检总局副局长孙大伟、国务院机关事务管理局副局长李宝荣出席活动并致辞,中国工程院院长周济也出席了活动。
解振华在讲话中指出,照明节电是世界各国推动节能减排、应对气候变化的重要内容,国际上已有十几个国家和地区发布了淘汰白炽灯路线图以及推广绿色照明的行动计划。研究报告显示,全球照明用电占到总用电量的19%,我国照明用电约占全社会用电量的13%,如果把我国在用的14亿只白炽灯全部替换为节能灯,每年可实现节电480亿度,相当于减少二氧化碳排放4800万吨,节能减排潜力很大。2011年11月1日,国家发展改革委、商务部、海关总署、国家工商总局、国家质检总局联合发布《中国逐步淘汰白炽灯路线图》,明确从2012年10月1日起,分阶段逐步禁止进口和销售普通照明白炽灯,这是为确保实现“十二五”节能减排目标任务、积极应对全球气候变化的又一个积极举措。他强调,我国是照明产品生产大国,为全球市场供应了30%以上的白炽灯和85%的节能灯。中国逐步淘汰白炽灯路线图的发布实施,不仅将对中国照明电器行业转型升级,全社会节能减排产生积极影响;也会为全球节约能源、减少温室气体排放做出重要贡献;更重要的是通过一盏灯,将绿色低碳的理念传递到千家万户和每个人的心中。2100433B
《综合型老工业基地产业转型研究》
绪论3
第一节选题背景与研究意义1
一、选题背景1
二、研究意义6
第二节国内夕l研究现状与评述7
一、国内研究现状与评述8
二、国外研究现状与评述16
第三节研究框架、研究方法和可能创新之处19
一、研究的主要框架19
二、研究方法21
三、研究的创新之处22
产业转型的相关理论基础24
第一节区域发展理论24
一、增长极理论24
二、梯度推移理论25
三、区域经济阶段理论25
第二节城市经济理论28
一、城市发展因素论28
二、城市功能变迁论31
第三节产业发展理论32
一、产业生命周期理论32
二、产业结构演变理论34
第四节产业种群生态模型与产业融合37
一、竞争关系模型37
二、互利关系模型39
三、掠食关系模型40
四、三次产业的融合演进模型41
第五节要素集聚与产业匹配原理43
一、老工业基地生产要素的集聚原理44
二、资源要素与产业发展匹配机制45
第六节主导产业更迭原理47
一、基于主导产业的老工业基地演化轨迹48
二、主导产业作为老工业基地演进吸引核的数理表征49
三、不确定环境下老工业基地的主导产业更迭51
第二章综合型老工业基地产业转型的实践与经验借鉴53
第一节国外老工业基地复兴的实践及启示53
一、设立老工业基地改造与振兴的专门机构54
二、调整产业结构55
三、对老工业基地的援助政策56
四、采取优惠政策吸引外资58
五、设立经济发展区58
六、重视社会发展60
第二节国外老工业城市转型的实践及启示61
一、芝加哥:打造多元化经济体系的典范61
二、汉诺威:突出专业化功能的样板62
三、洛杉矶:技术创新驱动城市再生的范例62
四、曼彻斯特:以知识城市实现华丽转身的榜样63
第三节国内老工业基地改造调整的探索历程及特点63
一、由企业向产业逐渐推进的点式改造64
二、板块式推进的综合性改造64
三、国内外老工业基地改造的背景差异65
第四节国内综合型老工业基地改造调整的经验借鉴66
一、城市老工业区改造的“铁西经验”66
二、老工业基地改造的“成都模式”68
第三章武汉老工业基地的工业足迹与改造历程70
第一节武汉老工业基地的产业结构调整与演变70
一、三次产业结构的调整70
二、三次产业互动协调的演变72
第二节武汉老工业基地的工业化进程78
一、工业化发展阶段判断78
二、工业化与城市化协调水平79
三、工业结构的演变82
四、工业经济类型结构的演变83
五、主导产业的演变和更迭83
第三节武汉市探索老工业基地综合改造的轨迹87
一、以“两通起飞”为突破口的经济体制综合改革87
二、以市场经济为导向的综合配套改革87
三、以“两型社会”建设为主体的综合配套改革89
第四章武汉工业结构转型升级的目标与思路90
第一节武汉工业结构转型升级的时代背景90
一、世界经济进入后危机时代重整期90
二、结构调整成为国内经济发展的重要课题91
三、武汉市工业进入加快发展跃升期92
第二节武汉工业结构转型升级的目标和路径97
一、武汉工业结构转型升级的目标98
二、武汉工业结构转型升级的思路100
三、武汉工业结构转型升级的基本路径101
第三节武汉市城区工业空间布局及优化思路105
一、武汉市城区工业空间布局的现状106
二、武汉市空间布局优化的基本原则107
三、武汉市产业空间布局优化思路109
第五章 促进武汉老工业基地产业转型的x,l策建议114
第一节借助东湖国家示范区建设加快发展战略新兴产业115
一、坚持战略新兴产业与传统产业支持相结合115
二、坚持产业创新与自主创新相结合116
三、坚持核心技术开发与创新商业模式相结合117
四、坚持人才培养、引进与使用相结合117
五、坚持创业孵化与产业成长相结合118
第二节建设区域性产业整合中心120
一、推进制造业与生产型服务业融合互动120
二、促进产业链的延伸和产业层级的提升121
三、加大自主创新推动区域创新先导化122
四、积极发展总部经济123
五、着力建设文化创意产业基地123
六、鼓励引进来和走出去124
第三节发展低碳经济推进产业生态化调整124
一、创新构建产业生态化转型的技术支撑体系125
二、以循环经济理念促进优势产业两型化125
三、建设新能源环保产业基地126
第四节优化空间布局促进城市功能转型126
一、创新规划管理机制127
二、以城市更新计划和旧城改造拓展城市功能升级新空间127
三、以统筹城乡发展推进城中村改造129
四、以园区建设推进产业空间集聚化132
第五节转变政府职能保障老工业基地改造133
一、深化行政审批制度改革,提升行政效能133
二、发挥资源配置中宏观调控和市场基础作用135
三、构建转型发展的政策支撑体系136
四、着力打造服务型政府138
结束语 第一节研究结论139
一、武汉老工业基地的三次产业呈现融合趋势139
二、武汉老工业基地工业结构不断优化140
三、需要主动管理以推进产业融合和主导产业更迭140
四、产业转型是老工业基地振兴的重要突破121140
五、两化融合促进武汉老工业基地转型升级141
第二节研究展望142
一、研究对象的拓展142
二、研究内容的深化142
第三节研究启示143
参考文献144
附文武汉制造业发展的若干问题151
“十一五”武汉市产业支撑和延伸产业链的深化研究160
积极培育发展战略性新兴产业169
产业梯度转移理论在区域经济发展中失灵的原因分析及其启示——兼议经济理论应用中约束条件的不可忽略性171
后记:庸人俗愿177
英文名:incandescent lamp
白炽灯的光效虽低,但光色和集光性能好,白炽灯将灯丝通电加热到白炽状态,利用热辐射发出可见光的电光源。自1879年,美国的T.A.爱迪生制成了碳化纤维(即碳丝)白炽灯以来,经人们对灯丝材料、灯丝结构、充填气体的不断改进,白炽灯的发光效率也相应提高。1959年,美国在白炽灯的基础上发展了体积和衰光极小的卤钨灯。白炽灯的发展趋势主要是研制节能型灯泡。不同应用最广泛的电光源。
一般人认为电灯的发明者是发明大王爱迪生,实际上,这方面的试验研究在爱迪生之前就已开始了。
在美国1845年的一份专利档案中,辛辛那提的斯塔尔提出可以在真空泡内使用碳丝。英国的斯旺按照这种思路,用一条条碳化纸作灯丝,企图使电流通过它来发光,但是,因当时抽真空的技术还很差,灯泡中的残余空气,使得灯丝很快烧断。因此,这种灯的寿命相当短,仅有个把小时,不具有实用价值。1878年,真空泵的出现,使斯旺有条件再度开展对白炽灯的研究。1879年1月,他发明的白炽灯当众试验成功,并获得好评。
1879年,爱迪生也开始投入对电灯的研究,他认为 ,延长白炽灯寿命的关键是提高灯泡的真空度和采用耗电少,发光强、且价格便宜耐热材料作灯丝,爱迪生先后试用了1600多种耐热材料,结果都不理想,1879年10月21日同,他采用在采用碳化棉线作灯丝,把它放入玻璃球内,再启动气机将球内抽成真空。结果,碳化棉灯丝发出的光明亮而稳定,足足亮了10多个小时。就这样,碳化棉丝白炽灯诞生了,爱迪生为此获得了专利。
成功并未使爱迪生停步,他在继续寻找比碳化棉更坚固耐用的耐热材料。1880年,爱迪生又研制出碳化竹丝灯,使灯丝寿命大大提高,同年10月,爱迪生在新泽西州自行设厂,开始进行批量生产,这是世界最早的商品化白炽灯,英国的斯旺也于1881年在新堡郊外本威尔设厂。
白炽灯的发明,美国通常归功于爱迪生,英国则归功于斯旺。在英国,电灯发明百周年纪念于1978年10月举行,而美国则于一年后的11月举行。
两位发明家的竞争十分激烈,专利纠纷几乎不可避免,后来,两人达成协议,合资组建了爱迪生──斯旺电灯公司,在英国生产白炽灯。
现代的钨丝白炽灯到1908年才由美国发明家库利奇试制成功。发光体是用金属钨拉制的灯丝,这种材料最可贵的特点是其熔点很高,即在高温下仍能保持固态。事实上,一只点亮的白炽灯的灯丝温度高达3000℃。正是由于炽热的灯丝产生了光辐射,才使电灯发出了明亮的光芒。因为在高温下一些钨原子会蒸发成气体,并在灯泡的玻璃表面上沉积,使灯泡变黑,所以白炽灯都被造成“大腹便便”的外型,这是为了使沉积下来的钨原子能在一个比较大的表面上弥散开。否则的话,灯泡在很短的时间内就会被熏黑了。由于灯丝在不断地被升华,所以会逐渐变细,直至最后断开,这时一只灯泡的寿命也就结束了。
在所有用电的照明灯具中,白炽灯的效率是最低的,它所消耗的电能只有很小的部分,即12%-18%可转化为光能,而其余部分都以热能的形式散失了。至于照明时间,这种电灯的使用寿命通常不会超过1000小时。在这一点上,卤素灯就比一般的白炽灯要长很多。卤素灯的外形一般都是一个细小的石英玻璃管,和白炽灯相比,其特殊性就在于钨丝可以“自我再生”。实际上,在这种灯的灯丝和玻璃外壳中充有一些卤族元素,如碘和溴。当灯丝发热时,钨原子被蒸发向玻璃管壁方向移动。在它们接近玻璃管时,钨蒸气被“冷却”到大约800℃并和卤素原子结合在一起,形成卤化钨(碘化钨、溴化钨)。卤化钨向玻璃管中央移动,又落到被腐蚀的灯丝上。因为卤化钨很不稳定,遇热后就会分解成卤素蒸气和钨,这样钨又在灯丝上沉积下来,弥补了被蒸发的部分。如此循环,灯丝的使用寿命就会延长很多。所以,卤素灯的灯丝就可以做的相对较小,灯体也很小巧。卤素灯一般用在需要光线集中照射的地方,比如用于写字台或居室局部的照明。
澳大利亚政府推出了一项逐步采用节能荧光照明设备,以减少温室气体排放的计划,从2010年开始将禁止使用白炽灯泡。
这是世界上第一个打算淘汰白炽灯泡的计划。为了节能,为了环保,白炽灯泡将要寿终正寝了。
据介绍,紧凑型荧光灯售价约是白炽灯泡的10倍,但寿命是后者的6倍,而且同等亮度的产品,荧光灯耗电量不足白炽灯泡的四分之一。随着新产品的不断出现,新型光源也不断诞生,譬如LED发光二极管,是一种半导体固体发光器件,被称为第四代照明光源或绿色光源,具有节能、环保、寿命长、体积小等特点,使用寿命可达6万到10万小时,比传统光源寿命长10倍以上;电光功率转换接近100%,相同照明效果比传统光源节能80%以上。
人类使用白炽灯泡已有128年的历史了。提起白炽灯泡,人们必然会联想起爱迪生。实际上早在爱迪生之前,英国电技工程师斯旺(j.Swan)从40年代末即开始进行电灯的研究。经过近30年的努力,斯旺最终找到了适于做灯丝的碳丝。1878年12月18日,斯旺试制成功了第一只白炽电泡。此后不久,他还在纽卡斯尔化学协会上展示过他的碳丝灯泡。而当他的有关白炽电灯的实验报道在美国发表之后,也曾给爱迪生以直接的帮助。与爱迪生不同的是,斯旺在发明白炽电灯后,直到1880年才去申请专利;直到1881年才正式投产。而在灯泡投产之后,他未能像爱迪生那样建立相应的发电站和输电网。这样就使得爱迪生后来居上,成了人们公认的白炽电灯的发明家。
在爱迪生研制白炽灯泡灯丝材料的过程中,曾试验过棉线、木材的细条、稻草、纱纸、线、马尼拉麻绳、马鬃、钓鱼线、麻栗、硬橡皮、栓木、藤条、玉蜀黍纤维,甚至人的胡须、头发。
在1879年10月21日的傍晚,爱迪生和助手们成功地把炭精丝装进了灯泡。一个德国籍的玻璃专家按照爱迪生的吩咐,把灯泡里的空气抽到只剩下一个大气压的百万分之一,封上了口,爱迪生接通电流,他们日夜盼望的情景终于出现:灯泡发出了金色的亮光。在连续使用了45个小时以后,这盏电灯的灯丝才被烧断,这是人类第一盏有广泛实用价值的电灯。后来人们就把10月21日定为电灯日。以后爱迪生还一直致力于白炽灯的改进,为了提高灯泡的质量,延长灯泡的寿命,爱迪生想尽一切办法寻找适合制灯丝的材料。到1880年5月初,他试验过的植物纤维材料共约6000种。在很长的一段时间里,爱迪生派遣了很多人前往世界各地寻找适合于制作灯丝的竹子。直至1908年的9年间,日本竹一直是供应碳丝的主要原料。
爱迪生发明的白炽灯泡为人类的文明做出了巨大的贡献,但为了节能,为了环保,只能让它退出历史舞台。
补充:白炽灯有一个其他大部分类型发光产品不具备的优点,即适合频繁启动的场合。
白炽灯的详细原理
普通的白炽灯,主要由玻壳、灯丝、导线、感柱、灯头等组成。
玻壳做成圆球形,制作材料是耐热玻璃,它把灯丝和空气隔离,既能透光,又起保护作用。白炽灯工作的时候,玻壳的温度最高可达100℃左右。
灯丝是用比头发丝还细得多的钨丝,做成螺旋形。看起来灯丝很短,其实把这种极细的螺旋形的钨丝拉成一条直线,这条直线竟有1米多长。
两条导线表面上很简单,实际上由内导线、杜美丝和外导线三部分组成。内导线用来导电和固定灯丝,用铜丝或镀镍铁丝制做;中间一段很短的红色金属丝叫杜美丝,要求它同玻璃密切结合而不漏气;外导线是铜丝,任务就是连接灯头用以通电。
一个喇叭形的玻璃零件就是感柱,它连着玻壳,起着固定金属部件的作用。其中的排气管用来把玻壳里的空气抽走,然后将下端烧焊密封,灯就不漏气了。
灯头是连接灯座和接通电源的金属件,用焊泥把它同玻壳粘结在一起。
这里特别需要讲讲灯丝,因为电灯正是要靠它来发光的。同炭丝一样,白炽灯里的钨丝也害怕空气。如果玻壳里充满空气,那么通电以后,钨丝温度升高到2000℃以上,空气就会对它毫不留情地发动袭击,使它很快被烧断,同时生成一种黄白色的三氧化钨,附着在玻壳内壁和灯内部件上。
要是玻壳里残留的空气比较少,那么上面讲的过程就会进行得慢一些,钨跟空气中的氧化合生成一薄层蓝色的三氧化二钨和氧化钨的混合物。
这些都是空气玩的把戏——空气里的氧气使高温的钨丝氧化了。所以钨丝灯泡要抽成真空,把空气统统清除出去。
有时怕抽气机抽不干净,还要在灯泡的感柱上涂一点红磷。红磷受热会变成白磷,白磷很容易同氧气反应,生成固态的五氧化二磷,把氧气“吃掉”,这样,玻壳里残留的氧气也被消除了。
但是,这样做还没有解决全部问题。白炽灯用久了玻壳会变黑,再过一段时间会烧断。
长时间的高温使钨丝表面的钨原子像水蒸汽一样不断地蒸发扩散,然后一层又一层地沉积到玻壳的内表面上,使玻壳慢慢黑化,越来越不透明。 确实,钨丝比起炭丝来,在真空里的蒸发速度要慢得多。但是,当白炽灯点亮温度升得很高的时候,钨的蒸发仍然十分严重。
钨的蒸发也使钨丝越来越细,最后烧断。
灯丝工作温度越高,钨的蒸发越快,白炽灯的使用寿命就越短。
减少灯丝在真空条件下减少蒸发和延长使用寿命
办法只有降低温度,降低灯丝温度可以达到延年益寿的目的。钨丝工作温度高达2700℃时,灯泡点亮不到1个小时就熄灭;钨丝工作温度下降到1700℃,使用寿命可以延长到1000个小时以上。
可是,这并不是个好办法。降低钨丝的工作温度,也就是降低它的白炽程度,会使白炽灯的发光效率降低,远不如温度高时那么明亮。
要想白炽灯更多地发光,就得提高灯丝的工作温度;要想减少钨丝的蒸发以延长灯的寿命,又得降低它的一体温”。这是矛盾的。
我们的要求是既有高的发光效率,又能减少钨丝蒸发。
人们注意到,当灯泡里充有空气的时候,虽然灯丝很快会被氧化,但是钨的蒸发却变慢了。
原因其实很简单:空气是由多种成分组成的,使钨氧化的只是占空气总量1/5的氧气;至于其余的大约占4/5的氮气,它不仅没有参与对钨的破坏作用,相反地还干了好事——阻碍钨分子的运动,降低钨的蒸发速度。
人们于是给钨丝找到了一位保卫它的好朋友——氮气。氮气就在空气里,而且占了空气的大多数,真可谓“踏破铁鞋无觅处,得来全不费工夫”。
过去我们为了保证白炽灯延年益寿,不得不把玻壳中的空气抽走,抽得越干净越好,为了同样的目的,我们却要做相反的工作,即把气体——当然是不会跟钨发生化学反应的气体充到玻壳里去。
如果灯泡里是真空的,那么当钨丝接通电源,温度升高后,钨的分子就会“蠢蠢欲动”,大量地脱离灯丝,“如入无人之境”,到处乱跑,直到碰在玻壳壁上被吸着时为止。
玻壳里一旦充进了氮气,白炽的灯丝周围就会形成一薄层稳定的气体保护层,就像一道活的“篱笆”。每一个氮气分子都是一名勇敢的战士,守卫在钨丝的附近,对那些企图脱离集体四处乱窜的钨分子毫不客气,狠狠地顶撞回去,叫它们重返工作岗位,继续为光明服务。这样一来,钨丝的蒸发速度就慢得多了。
结果是出现了充氮气的白炽灯泡。
1913年,兰米尔首次往玻壳里充进氮气,这是继灯丝由炭丝改钨丝后白炽灯的又一重要革新。充气仍然是抑制钨丝蒸发的基本措施。
不过,有一点要注意,因为氧气或水蒸汽都会在钨丝工作时跟它起氧化反应,所以对充气的含氧量和含水量都有极严格的要求,不然的话,灯泡的寿命就会大大地缩短。
充气使钨丝的蒸发速度变慢,同样的使用期限可以使灯丝在更高的温度下工作,所以充气灯泡的发光效率比真空灯泡要高。一般来说,充气灯泡的发光效率要比真空灯泡高出1/3以上。
简史 19世纪后半叶,人们开始试制用电流加热真空中灯丝的白炽电灯泡。1879年,美国的T.A.爱迪生制成了碳化纤维(即碳丝)白炽灯,率先将电光源送入家庭。1907年,A.贾斯脱发明拉制钨丝,制成钨丝白炽灯。随后不久,美国的I.朗缪尔发明螺旋钨丝,并在玻壳内充入惰性气体氮,以抑制钨丝的蒸发;1915年发展到充入氩氮混合气。1912年,日本的三浦顺一为使灯丝和气体的接触面尽量减小,将钨丝从单螺旋发展成双螺旋,发光效率有很大提高。1935年,法国的A.克洛德在灯泡内充入氪气、氙气,进一步提高了发光效率。1959年,美国在白炽灯的基础上发展了体积和光衰极小的卤钨灯。白炽灯的发展史是提高灯泡发光效率的历史。
白炽灯生产的效率也提高得很快。80年代,普通白炽灯高速生产线的产量已达8000只/小时,并已采用计算机进行质量控制。
不同用途和要求的白炽灯,其结构和部件不尽相同。普通白炽灯泡(见图普通白炽灯结构)的主要部件是玻壳和灯丝。
· 推广应用高效照明产品;
· 推进照明节电,实现照明节电10%的目标,预期到2010年照明节电累计1032亿kW·h;
· 通过节电,减少温室气体排放,到2010年累计减排二氧化碳4130万吨碳;
· 提高高效照明产品的质量和水平,扩大生产能力和出口量;
· 提高公众节能环保意识,更清楚了解高效照明系统的好处。
其措施之一是严格限制低光效的普通白炽灯应用:这已成为全世界各国节能减排的共同要求。
一般应使用荧光灯,主要是自镇流荧光灯代替白炽灯;在一些开关频繁、要求调光、有特殊装饰要求的场所,以及商场重点照明等,宜选用卤素灯。
限制白炽灯应用,当前重点是宾馆和家庭两类场所:对宾馆主要靠设计师、装饰工程师和建设单位共同努力,增强节能观念和责任来解决;对家庭主要靠政府运用价格政策引导。