选择特殊符号
选择搜索类型
请输入搜索
智能控制(intelligent controls)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。 控制理论发展至今已有100多年的历史,经历了"经典控制理论"和"现代控制理论"的发展阶段,已进入"大系统理论"和"智能控制理论"阶段。智能控制理论的研究和应用是现代控制理论在深度和广度上的拓展。20世纪80年代以来,信息技术、计算技术的快速发展及其他相关学科的发展和相互渗透,也推动了控制科学与工程研究的不断深入,控制系统向智能控制系统的发展已成为一种趋势。
什么是智能控制箱,在什么系统里有?主要作用是什么??? 答:家居多媒体箱作为家庭与外部通信系统连接的界面,入户线采用1-2根五类双绞线及同轴电缆,在箱中进行相应管理,即可支持家中多部电话、传真、电脑、...
戈顿斯推出的智能电地暖远程控制方案,可以很好的解决其时间问题。用户在拥有WIFI/3G 网络的情况下,可以通过android/ios系统的智能手机或者平板电脑远程控制发热电缆的...
智能应急照明系统的组成 2. 1 e - bus / 10 系统组成及消防联动功能e - bus / 10 系统为一个独立的局域网, 采用RS232 / RS4...
智能控制基础实验报告
智 能 控 制 基 础 实 验 报 告 姓名: 班级: 学号: 1. 建立一个两输入一输出的模糊规则控制器, 并用 simulink仿真 分别通过一阶和二阶传递函数,观察模糊控制器输出、误差及 其变化率和输出响应。 解:这里选取二阶和一阶传递函数为 2 1 4s s 和 1 2s ,查看其阶跃响应。 用 MATLAB 模糊逻辑工具箱设计模糊控制器 模糊控制器为两输入一输出, 这里定义输入为 E、EC,输出为 U。 选择 E、EC和 U的论域如下: E range: [-1 1] EC range: [-1 1] U range: [0 2] 其模糊子集都为 {NB,NM,NS,ZO,PS,PM,PB}; 模糊规则确定: U EC NB NM NS ZO PS PM PB E NB PB PB PB PB PM ZO ZO NM PB PB PB PB PM ZO ZO N
智能控制实验报告
智能控制实验报告 数字 PID 及其算法 戴子文 200730580307 房柳煌 200730580309 张荣春 200730580331 指导老师:陈瑜 日期: 2010年 12月 2日 华南农业大学工程学院 1 数字 PID及其算法 一、 实验目的: 1、 掌握数字 PID及其算法 2、 掌握AS-UII电机的软件驱动方法特性、 AS-UII 走直线的开环特性、 AS-UII的闭环特性及其分析方法 二、 实验原理及实验步骤: 1、PID算法的数字化实现 在模拟系统中, PID算法的表达式为: 式中, P(t)----调节器的输出信号; e(t )-----调节器的偏差信号,它等于测量值与给定值之差; Kp-----调节器的比例系数; T1----调节器的积分时间; TD ----调节器的微分时间; 离散化的 PID: Δ t=T 采样周期,必须使 T足够少,才能保证系统
第1章绪论
1.1智能控制的发展
1.1.1智能控制问题的提出
1.1.2智能控制的发展
1.2智能控制的几个主要分支
1.2.1基于知识的专家系统
1.2.2模糊控制
1.2.3神经元网络控制
1.2.4学习控制
1.3智能控制系统的构成原理
1.3.1智能控制系统结构
1.3.2智能控制系统的特点
1.3.3智能控制系统研究的主要数学工具
习题和思考题
第2章模糊控制论
2.1引言
2.2模糊集合论基础
2.2.1模糊集的概念
2.2.2模糊集合的运算
2.2.3模糊集合运算的基本性质
2.2.4隶属度函数的建立
2.2.5模糊关系
2.3模糊逻辑、模糊逻辑推理和合成
2.3.1二值逻辑
2.3.2模糊逻辑的基本运算
2.3.3模糊语言逻辑
2.3.4模糊逻辑推理
2.3.5模糊关系方程的解
2.4模糊控制系统的组成
2.4.1模糊化过程
2.4.2知识库
2.4.3决策逻辑
2.4.4精确化过程
2.5模糊控制系统的设计
2.5.1模糊控制器的结构设计
2.5.2模糊控制器的基本类型
2.5.3模糊控制器的设计原则
2.5.4模糊控制器的常规设计方法
2.6模糊PID控制器
2.6.1模糊控制器和常规PID的混合结构
2.6.2常规PID参数的模糊自整定技术
2.7模糊控制器的应用
2.7.1流量控制的模糊控制器设计
2.7.2倒立摆的模糊控制
习题和思考题
第3章人工神经元网络控制论
3.1引言
3.1.1神经元模型
3.1.2神经网络的模型分类
3.1.3神经网络的学习算法
3.1.4神经网络的泛化能力
3.2前向神经网络模型
3.2.1多层神经网络结构
3.2.2多层传播网络的BP学习算法
3.2.3快速的BP改进算法
3.2.4BP学习算法的MATLAB例程
3.3动态神经网络模型
3.3.1带时滞的多层感知器网络
3.3.2Hopfield神经网络
3.3.3回归神经网络
3.4CMAC神经网络
3.4.1小脑网络的感知器模型
3.4.2CMAC的映射原理
3.4.3CMAC网络的学习算法
3.5RBF神经网络模型
3.5.1具有固定中心的RBF神经网络的训练
3.5.2径向基神经网络训练的随机梯度逼近法
3.6神经网络控制基础
3.6.1引言
3.6.2神经网络的逼近能力
3.7非线性动态系统的神经网络辨识
3.7.1神经网络的辨识基础
3.7.2神经网络辨识模型的结构
3.7.3非线性动态系统的神经网络辨识
3.8神经网络控制的学习机制
3.8.1监督式学习
3.8.2增强式学习
3.9神经网络控制器的设计
3.9.1神经网络直接逆模型控制法
3.9.2真接网络控制法
3.9.3多神经网络自学习控制法
3.10单一神经元控制
习题和思考题
第4章专家控制
4.1引言
4.2专家控制的基本原理
4.2.1专家控制系统的基本内容
4.2.2知识表达
4.2.3知识推理
4.2.4专家控制系统的设计
4.3专家控制应刚举例
4.3.1PID专家控制系统设计
4.3.2过程专家控制系统
4.4仿人智能控制
4.4.1仿人智能控制的引入
4.4.2仿人智能控制的基本概念
4.4.3仿人智能控制的实现
4.4.4仿人智能控制的应用举例
习题和思考题
上机实验题
第5章分层递阶智能控制
5.1引言
5.2递阶智能控制的基本原理
5.3递阶智能控制的组织和协调
5.3.1递阶智能控制的组织级
5.3.2递阶智能控制的协调级
5.3.3递阶智能控制的执行级
5.4分层递阶智能控制的应用举例
5.4.1智能机器人系统的递阶控制
5.4.2集散递阶智能控制系统
习题和思考题
第6章学习控制
第7章模糊神经网络控制与自适应神经网络
第8章进货算法
第9章多智能体系统控制 2100433B
智能控制作为一门新兴学科,它的发展得益于许多学科,如人工智能、认知科学、现代控制理论、模糊数学、生物控制论、学习理论以及网络理论等。
《智能控制基础》总结近20年来智能控制的研究成果,详细论述智能控制的基本概念、工作原理和设计方法。主要内容包括:智能控制概论、模糊控制论、人工神经网络控制论、专家控制、分层递阶智能控制、学习控制、模糊神经网络控制与自适应神经网络、进化算法、多智能体系统控制。
《智能控制基础》在深入系统介绍智能控制设计理论和应用方法的同时,还结合课堂教学给出了大量的设计例子和习题。
《智能控制基础》选材新颖,系统性强,通俗易懂,突出理论联系实际。既适合初学者学习智能控制的基本理论和方法,又对智能控制的研究学者有一定的参考价值。它标注了部分拓展内容的章节,供深入研究者参考。整本教材主要针对控制科学与工程、电气工程等学科硕士研究生和自动化专业高年级本科生使用,也适合其他专业的工程师阅读和参考。
基本信息
出版时间: 2001-01-01
版 次: 1
页 数: 202
装 帧: 平装
开 本: 16开
所属分类: 图书>教材教辅>大学教材
内容简介
《智能控制工程》从工程应用角度出发,介绍了智能控制的主要内容,包括知识工程、专家控制系统、模糊控制、人工神经网络控制以及以智能机器人为背景的多传感器集成与信息融合、智能控制体系结构及柔性装配中的控制技术。《智能控制工程》兼顾课堂教学和自学的特点,尽量采用深入浅出的分析和示例代替较为深奥的数学描述,以便读者较容易地掌握《智能控制工程》的主要内容。 《智能控制工程》可作为大专院校机械电子工程、工业自动化、自动控制及计算机应用等专业的本科生及研究生的教材和参考书,也可供有关教师、科研及工程技术人员参考。2100433B