选择特殊符号
选择搜索类型
请输入搜索
a/d 转换器即模数转换器,或简称 adc,通常是指一个将模拟信号转变为数字信号的电子元件。 通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。由于数字信号本身不具有实际意义,仅仅表示一个相对大小。故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。而输出的数字量则表示输入信号相对于参考信号的大小。 模数转换器最重要的参数是转换的精度,通常用输出的数字信号的位数的多少表示。转换器能够准确输出的数字信号的位数越多,表示转换器能够分辨输入信号的能力越强,转换器的性能也就越好。
ad转换器的主要指标如下。 (1)分辨率(resolution)。指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。分辨率又称精度,通常以数字信号的位数来表示。 (2)转换速率(conversion rate)。是指完成一次从模拟转换到数字的ad转换所需的时间的倒数。积分型ad的转换时间是毫秒级属低速ad,逐次比较型ad是微秒级属中速ad,全并行/串并行型ad可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(sample rate)必须小于或等于转换速率。因此习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps和msps,表示每秒采样千/百万次(kilo / million samples per second)。 (3)量化误差(quantizing error)。由于ad的有限分辨率而引起的误差,即有限分辨率ad的阶梯状转移特性曲线与无限分辨率ad(理想ad)的转移特性曲线(直线)之间的最大偏差。通常是1个或半个最小数字量的模拟变化量,表示为1lsb、1/2lsb。 (4)偏移误差(offset error)。输入信号为雷时输出信号不为零的值,可外接电位器调至最小。 (5)满刻度误差(full scale error)。满刻度输出时对应的输入信号与理想输入信号值之差。 (6)线性度(lineafity)。实际转换器的转移函数与理想直线的最大偏移,不包括以上3种误差。 ad的其他指标还有绝对精度(absolute accuracy)、相对精度(relative accuracy)、微分非线性、单调性和无错码、总谐波失真(thd,total harmonic distotortion)和积分非线性等。 对于ad转换器,选取的标准主要决定于采样频率和位数,以及价格、供货周期、应用情况等其他因数。生产高速ad的主要厂家有ad公司、maxim公司以及ti公司(也就是bb公司)。这三家公司在高速ad上的产品种类不是很多,根据对各种ad芯片的查阅,选择ti公司的ad转换芯片ads5422。 ads5422是14bit的最高采样频率可达62msps的高速ad转换芯片,采用单- 5v电源供电,在采样频率为10m时其最大动态范围为82db,最高信噪比达到72db,其数字量输出可以直接和5v或者3.3v的cmos芯片连接,模拟量输入的峰峰值为4v,可以直接输人0.5~4.5v的模拟量,封装形式为64脚的扁平四方封装,目前ti的官方报价为29美元/片(一次购买千片以上的单价)。国内也有该芯片出售,国内价格在300元左右。 14bit的ad转换适应信号的范围为10lg(214)db=42db,基本上可以适应各种应用场合。ads5422的采样频率的大小由其输人时钟决定,输入时钟的范围可以在16ns~1μs,输人时钟为16ns时对应采样频率为62mhz,ad可以接受3v或者5v的ttl或者cm0s电平。dsp可以提供该时钟信号,并且可以软件设置输人时钟的各种特征量,包括时钟频率、高电平宽度等,基本上可以满足ad5422对时钟信号的要求。这里确定ad的实际采样频率为60mhz。这样,一秒钟内采样的数据量为50m个,由于dsp系统无法及时处理这些数据,在数据处理之前,必须将这些数据保存起来,使用Πfo保存1m个数据,也就是20ms内的采样数据,1m个数据采集结束开始信号处理。由于高速ad采样导致信号不稳定,甚至出现错误。将设计多层板,加强布线的合理性,从电路板上尽可能去除干扰;其次提高算法的效率,节省计算时间。 和ads5422功能接近的其他型号的ad还有ad公司的ad9244。和ads5422相比,两者数据位数都是14bit,在信噪比上两者相近,时钟输入和操作方法相近,电源都是5v,输出数字信号都可以和3.3v的芯片兼容;其主要优点是功耗是ads5422的一半,500mw;其主要缺点是输人模拟电压峰峰值为ads5422的一半,只有2v。 ad公司其他的高速ad芯片还有ad6644,为其早期产品,操作方法和ads5422、ad9244不一样,ad6644功耗达到1.3w。和ad9244相比,没有什么优点,ad9244是其替代产品。 高速ad的另外一个厂家maxim公司也有一批高速ad产品,但采样频率在40mhz以上没有14bit数据的ad,其产品优势主要集中在中速ad上。
d/a转换器是计算机或其它数字系统与模拟量控制对象之间联系的桥梁,它的任务是将离散的数字信号转换为连续变化的模拟信号。在工业控制领域中,d/a转换器是不可缺少的重要组成部分。
以下以一个四位的d/a转换器说明d/a转换器的工作原理: 当d3=1 i3=vd/2r=vref/(1×2r) 当d3=0 i3=0 当d2=1 i2=vd/2r=vref/(2×2r) 当d2=0 i2=0 当d1=1 i1=vd/2r=vref/(4×2r) 当d1=1 i1=0 当d0=1 i0=vd/2r=vref/(8×2r) 当d0=1 i0=0 vout=-iout1×rf 由此可见:随着d3-d0的取值(0、1)的不同在运放输出端可以得到不同的电压量。如果用数字量来控制电子开关的通断(1表示接通,0表示断开) 例如:d3d2d1d0 vout 0000 0v 0001 1/24vref*rf/r 0010 2/24 vref*rf/r 0011 3/24 vref*rf/r 15/24 vref*rf/r 可见:在输出端可得到与输入数字量成正比的模拟电压量。
下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型、电容阵列逐次比较型及压频变换型。 1)积分型(如tlc7135) 积分型ad工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片ad转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)压频变换型(如ad650) 压频变换型(voltage-frequency converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种ad的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成ad转换。 3)并行比较型/串并行比较型(如tlc5510) 并行比较型ad采用多个比较器,仅作一次比较而实行转换,又称flash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频ad转换器等速度特别高的领域。 串并行比较型ad结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型ad转换器配合da转换器组成,用两次比较实行转换,所以称为half flash(半快速)型。还有分成三步或多步实现ad转换的叫做分级(multistep/subrangling)型ad,而从转换时序角度又可称为流水线(pipelined)型ad,现代的分级型ad中还加入了对多次转换结果作数字运算而修正特性等功能。这类ad速度比逐次比较型高,电路规模比并行型小。 4)∑-Δ(sigma?/font>delta)调制型(如ad7705) ∑-Δ型ad由积分器、比较器、1位da转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。 5)电容阵列逐次比较型 电容阵列逐次比较型ad在内置da转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列da转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片ad转换器。最近的逐次比较型ad转换器大多为电容阵列式的。 6)逐次比较型(如tlc0831) 逐次比较型ad由一个比较器和da转换器通过逐次比较逻辑构成,从msb开始,顺序地对每一位将输入电压与内置da转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
AD,DA中的A指模拟信号,D指数字信号,ADC指模拟信号到数字信号转换器,把电压值电流值转换成二进制码,DAC指数字信号到模拟信号转换器,把二进制码转换成电压电流
精度与AD的设计是有关系的,而分辩率是只与位数有关系的分辨率是可以计算的,U/2^位数 你的例子就是 10V/2^16=0.1526mV精度绝对值肯定是>分辩率的精度是需要测量出...
大家都知道,从一个房间走到另一个房间,必然要经过一扇门。同样,从一个网络向另一个网络发送信息,也必须经过一道“关口”,这道关口就是网关。顾名思义,网关(Gateway)就是一个网络连接到另一个网络的“...
AD78298通道采样8位AD转换器
REV. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. a AD7822/AD7825/AD7829 One Technology W
AD转换器及其接口设计
AD转换器及其接口设计
1)积分型(如TLC7135)
积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率, 但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如TLC0831)
逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出 数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。
3)并行比较型/串并行比较型(如TLC5510)
并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。
串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度 又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路 规模比并行型小。
4)Σ-Δ(Sigma?/FONT>delta)调制型(如AD7705)
Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。
5)电容阵列逐次比较型
电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高 精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。
6)压频变换型(如AD650)
压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。
本文件规定了工业级高可靠AD转换器(以下简称ADC)和DA转换器(以下简称DAC)的检测要求、检测方法和检验规则等。
本文件适用于工业级高可靠AD转换器和DA转换器的鉴定验收和评价检测活动。
AD转换器介绍
1. AD转换器的分类
下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。
1)积分型(如TLC7135)
积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。
2)逐次比较型(如TLC0831)
逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(12位)时价格很高。
3)并行比较型/串并行比较型(如TLC5510)
并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。
串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。
4)Σ-Δ(Sigma?/FONT>delta)调制型(如AD7705)
Σ-Δ型AD由积分器、比较器、1位DA转换器和数字滤波器等组成。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。
5)电容阵列逐次比较型
电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。
6)压频变换型(如AD650)
压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。
2. AD转换器的主要技术指标
1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。分辩率又称精度,通常以数字信号的位数来表示。
2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。
3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。
4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。
5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。
6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。
其他指标还有:绝对精度(Absolute Accuracy) ,相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distotortion缩写THD)和积分非线性。
3. DA转换器
DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。按数字输入值切换开关,产生比例于输入的电流(或电压)。此外,也有为了改善精度而把恒流源放入器件内部的。一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器。此外,电压开关型电路为直接输出电压型DA转换器。
1)电压输出型(如TLC5620)
电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内置输出放大器以低阻抗输出。直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟,故常作为高速DA转换器使用。
2)电流输出型(如THS5661A)
电流输出型DA转换器很少直接利用电流输出,大多外接电流—电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流—电压转换,二是外接运算放大器。用负载电阻进行电流—电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOSDA转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了达算放入器的延迟,使响应变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。
3)乘算型(如AD7533)
DA转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。
4)一位DA转换器
一位DA转换器与前述转换方式全然不同,它将数字值转换为脉冲宽度调制或频率调制的输出,然后用数字滤波器作平均化而得到一般的电压输出(又称位流方式),用于音频等场合。
4. DA转换器的主要技术指标:
1)分辩率(Resolution) 指最小模拟输出量(对应数字量仅最低位为‘1’)与最大量(对应数字量所有有效位为‘1’)之比。
2)建立时间(Setting Time) 是将一个数字量转换为稳定模拟信号所需的时间,也可以认为是转换时间。DA中常用建立时间来描述其速度,而不是AD中常用的转换速率。一般地,电流输出DA建立时间较短,电压输出DA则较长。
其他指标还有线性度(Linearity),转换精度,温度系数/漂移。
说明:⑴ 注①:当电池标志闪烁时,表示电池电压已低于2.5V,用户需在30天内更换电池,在此时间内,系统仍能正常工作。注②:在密码输入屏时,不输入密码或者密码输入错误按下“SET”键,可以查看各设置项,但不能修改。⑵ 所有状态下,按住“SHT”键再按“INC”键,均不保存当前修改设置并返回测量界面。⑶ 各参数设置屏意义,详见《D3型功能设置对照表》。 | ||||
D3型功能设置对照表 | ||||
功能设置屏1 | bAU | 通讯设定 | XXXX,第一位为波特率设定:0:无通讯;1:9600;2:4800;3:2400;4:1200;后三位为通讯地址设定,0~255 | |
功能设置屏2 | ZIP | 压缩因子修正 | 压缩因子是否修正 yes 或no | |
功能设置屏3 | n2 | N2百分比 | 设置N2百分比,范围0~15% | |
功能设置屏4 | A1t | 第一路报警控制字 | XXXX:个位:0:不报警;1:高报;2:低报;十位:1:报警时输出低电平;2:报警时输出高电平;百位:无意义千位:报警监控参数,0:工况流量;1:标况流量;2:压力;3:温度 | |
A1u | 第一路报警值 | XXXXXX,小数点可移动 | ||
A2F | 第二路报警回差 | XXXX,小数点可移动 | ||
功能设置屏6 | tEP | 温度设定 | XXXX,温度设定,小数点可移动,单位℃ | |
功能设置屏7 | PoC | 记录设定 | XXXX,设为0,不记录。后三位数字:0~999,设定记录周期,单位:分钟。第一位数字:1:记录每日0点的总量、标况量、温度、压力、日期、报警状态。2:记录启停时的日期、时间、总量、标况量、温度、压力、报警状态。3:固定时间间隔记录日期、时间、总量、标况量、温度、压力、报警状态。 | |
PuS | 当量脉冲设定 | 一个脉冲对应的标况体积流量,单位m3/h | ||
(1)内部电路板和其他零件的更换及相关操作必须由专业工程师或技术人员进行。
(2)打开壳盖前须保证设备断电至少10min。壳盖的打开须由专业工程师或技术人员进行。
(3)防爆型的转换器必须转移到一个安全的区域进行维修保养、拆卸、再组装。
(4)转换器电路板组件中包含敏感部件,可能会被静电损坏。小心操作以免直接接触电子
部件或电路板上的电路图案,必要时需采取相应的防静电措施。