序
前言
第1章 绪论 1
1.1 能源、环境与气候变化问题 1
1.1.1 世界能源形势 1
1.1.2 中国的能源形势和挑战 3
1.2 我国可再生能源的现状与发展 4
1.2.1 我国可再生能源资源和特点 4
1.2.2 非水能可再生能源发电现状 5
1.2.3 我国可再生能源发展预期 6
1.3 现有可再生能源发电技术 7
1.3.1 风力发电 7
1.3.2 太阳能光伏发电 8
1.3.3 太阳能高温热发电 9
1.4 太阳能热气流发电系统简介 11
1.4.1 系统原理 11
1.4.2 系统的特点 13
1.5 太阳能热气流发电系统实验系统及商业电站建设进展 14
1.6 太阳能热气流发电系统的理论研究进展 24
1.6.1 太阳能热气流发电系统的热力学理论 24
1.6.2 太阳能热气流发电系统的抽力机制 25
1.6.3 太阳能热气流发电系统的流动与传热理论 25
1.6.4 热气流透平的设计及其优化技术 27
1.6.5 太阳能热气流发电系统储能特性研究 28
1.6.6 太阳能热气流发电系统的经济性与可行性研究 29
1.7 中国关于太阳能热气流发电技术的研究 29
1.8 尚待进一步解决的问题 31
参考文献 32
第2章 太阳能热气流发电系统的热力学性能 42
2.1 概述 42
2.2 太阳能热气流发电系统热力学分析 42
2.2.1 热力过程描述 42
2.2.2 系统透平轴功 44
2.3 太阳能热气流发电系统实际效率 45
2.3.1 传热数学模型 45
2.3.2 流动阻力数学模型 47
2.4 程序可靠性验证 49
2.4.1 模型验证程序编制思想 49
2.4.2 西班牙实验电站数据的计算验证 49
2.4.3 对现有文献的预测模型进行计算验证 51
2.5 系统效率理论分析 52
2.5.1 西班牙实验电站模型计算结果 52
2.5.2 商业电站模型计算结果 54
2.6 本章小结 56
参考文献 56
第3章 太阳能热气流发电系统的效率优化 59
3.1 概述 59
3.2 理想循环效率和系统运行效率 59
3.2.1 理想循环效率 59
3.2.2 系统运行效率 63
3.3 提高系统效率的方法 65
3.3.1 透平效率的影响 65
3.3.2 烟囱高度和直径的影响 66
3.3.3 集热棚直径的影响 67
3.3.4 太阳辐射的影响 68
3.3.5 环境温度的影响 69
3.4 系统效率的影响因素定量分析 70
3.4.1 影响因素分析 70
3.4.2 发电功率影响因素分析 71
3.4.3 用于计算的参数选择方法 71
3.4.4 六条因素的大致影响范围 72
3.5 本章小结 73
参考文献 74
第4章 太阳能热气流发电系统的流动与传热特性 76
4.1 概述 76
4.2 流动与传热特性数学模型 77
4.2.1 数学模型 77
4.2.2 边界条件 78
4.3 计算结果与分析 81
4.3.1 模型验证 81
4.3.2 系统流场 82
4.3.3 系统运行特征 86
4.4 烟囱结构的优化设计 90
4.4.1 基于相同底部直径的不同烟囱形状的影响 90
4.4.2 基于相同表面积的不同烟囱形状的影响 93
4.4.3 烟囱高径比的影响 95
4.5 10MW模型设计方案 99
4.5.1 设计方案1 99
4.5.2 设计方案2 101
4.6 本章小结 102
参考文献 103
第5章 环境风对太阳能热气流发电系统的影响 106
5.1 概述 106
5.2 数学模型 107
5.3 环境风对西班牙实验电站的影响 108
5.3.1 物理模型 108
5.3.2 边界条件 109
5.3.3 数值模拟结果分析 110
5.4 环境风对大型太阳能热气流发电系统的整体影响分析 124
5.4.1 物理模型 124
5.4.2 边界条件 125
5.4.3 数值模拟结果分析 125
5.5 环境风对大型太阳能热气流发电系统烟囱出口的影响 131
5.5.1 物理模型 131
5.5.2 边界条件 132
5.5.3 结果分析 132
5.6 本章小结 140
参考文献 141
第6章 太阳能热气流发电系统的储能性能 142
6.1 概述 142
6.2 不同蓄热层的动态储热性能 143
6.2.1 物理数学模型 143
6.2.2 蓄热层的物性对系统的影响 144
6.2.3 空气流速对蓄热层性能的影响 145
6.3 太阳能热气流发电系统的储热性能及其发电特性 147
6.3.1 物理模型 147
6.3.2 数学模型 149
6.4 计算方法 155
6.5 验证 156
6.6 计算结果与分析 157
6.6.1 蓄热材料对系统发电性能的影响 157
6.6.2 水层厚度对系统发电性能的影响 158
6.6.3 水层面积对系统发电性能的影响 161
6.6.4 水层位置对系统发电性能的影响 162
6.7 本章小结 163
参考文献 163
第7章 风能-太阳能热气流综合集成发电系统 165
7.1 我国风电特点 165
7.2 我国大规模风力发电面临的问题 165
7.2.1 电网稳定性问题 165
7.2.2 风电场可调度性 166
7.3 解决大规模风电并网的技术途径 167
7.3.1 互补发电技术 167
7.3.2 大规模储能技术 167
7.4 风能-太阳能热气流集成储能发电技术 168
7.4.1 方案的提出 168
7.4.2 基本结构组合 169
7.4.3 系统特点 170
7.5 数学物理模型 171
7.5.1 物理模型 171
7.5.2 集热棚和烟囱内流动与传热数学模型 171
7.5.3 蓄热系统流动与传热数学模型 172
7.5.4 定解条件与求解 172
7.6 计算结果与分析 173
7.6.1 系统出力控制方法 173
7.6.2 10MW级综合发电系统计算结果 174
7.6.3 100MW级大规模综合发电系统计算结果 175
7.6.4 400MW级大规模综合发电系统计算结果 177
7.6.5 不同类型风力发电互补或储能模式比较 179
7.7 本章小结 180
参考文献 180
第8章 基于太阳能热气流系统的空气取水技术 182
8.1 空气取水技术的基本原理 182
8.1.1 空气取水技术原型 182
8.1.2 空气取水机理分析 183
8.1.3 环境和经济效益分析 185
8.2 模型描述 186
8.2.1 物理模型 186
8.2.2 数学模型 188
8.2.3 模型验证 192
8.3 空气取水特性分析 193
8.3.1 可行性分析 193
8.3.2 有效性分析 198
8.4 系统参数敏感性分析 200
8.4.1 烟囱进气流速 201
8.4.2 凝结高度 203
8.4.3 凝结水的质量流量 204
8.4.4 风力透平的输出功率 205
8.4.5 水力透平的输出功率 207
8.4.6 系统总输出功率 209
8.4.7 系统发电效率 210
8.5 本章小结 213
参考文献 213
第9章 基于太阳能热气流系统的温室气体大规模移除 215
9.1 概述 215
9.2 基于太阳能热气流系统的温室气体大规模移除性能 215
9.3 大尺度大气温室气体光催化转化 219
9.4 太阳能热气流系统内质量交换 220
9.5 讨论 222
9.6 本章小结 226
参考文献 226
第10章 太阳能热气流发电系统的经济性分析 229
10.1 概述 229
10.2 成本预测模型 229
10.2.1 系统结构预测模型 229
10.2.2 系统造价模型 229
10.2.3 系统发电成本模型 230
10.3 计算结果与分析 231
10.3.1 10MW系统计算结果 231
10.3.2 50MW系统计算结果 235
10.4 系统的技术经济可行性 236
10.4.1 不同类型电站技术经济性对比 236
10.4.2 不同类型太阳能热发电系统技术对比 237
10.4.3 不同容量系统的技术经济性对比 238
10.5 本章小结 238
参考文献 239
第11章 太阳能热气流发电系统的未来发展展望 241
11.1 概述 241
11.2 海水淡化 242
11.3 城市污染治理 243
11.4 干旱地区的下沉气流能源塔 246
参考文献 249
附录 2003~2018年发表的与本著作相关的代表性专著与论文 2512100433B