造价通

反馈
取消

热门搜词

造价通

取消 发送 反馈意见

轨道空间举例分析

2022/07/16156 作者:佚名
导读:例1 (1)考虑无限循环群 在 上的如下作用: 容易验证,其轨道空间 。 (2) 设n≥2,考虑正交群 ,在线性代数中我们已经知道,每个 都确定了 中的一个线性变换 ,这个线性变换保持欧氏度量。特别地,把单位向量映射为单位向量。因此每个 诱导了 的一个自同胚。并且容易看出,映射 是连续的。因此, 如同一个同胚群作用于球面 上。由Schmidt正交化方法不难看出,这个作用还是可迁的,因此轨道空间 只

例1 (1)考虑无限循环群

上的如下作用:

容易验证,其轨道空间

(2) 设n≥2,考虑正交群

,在线性代数中我们已经知道,每个
都确定了
中的一个线性变换
,这个线性变换保持欧氏度量。特别地,把单位向量映射为单位向量。因此每个
诱导了
的一个自同胚。并且容易看出,映射

是连续的。因此,
如同一个同胚群作用于球面
上。由Schmidt正交化方法不难看出,这个作用还是可迁的,因此轨道空间
只有一个点。

(3) 考虑群

在平面
上的作用:
,定义一个同胚

容易验证,上述对应确实给出了
在平面
上的一个作用。由(1)可知,其轨道空间是两个圆周的积空间。而且不难看出,平面上每个边长为1的正方形都包含了每个轨道中的点,并且正方形的对边在轨道空间中显然被同向地粘合在了一起,因此又有

(4)考虑剩余类群

在n-维球面
上的作用:不妨记
,其中0为单位元,而1为生成元。定义两个同胚;

就是恒等同胚,
就是对径映射,也是同胚。则不难验证,上述定义给出了
在n-维球面
上的一个作用,其轨道空间正是粘合
的对径点而得到的n-维射影平面

(5) 设p,q是两个互质的整数,把3-维球面

看做2-维复空间内的单位球面,即

的生成元为
,定义
上的作用如下:

(几次复合).

则不难验证,这确实给出了一个群作用,其轨道空问称为透镜空间,记为

定理 如G一个同胚群而作用于单连通空间X,并且对于每个点

,都存在
使得
,则

利用这个定理,我们也可以得到下面几个结论

例2 由于

都是单连通的,因此由例1可知 ,

2100433B

*文章为作者独立观点,不代表造价通立场,除来源是“造价通”外。
关注微信公众号造价通(zjtcn_Largedata),获取建设行业第一手资讯

热门推荐

相关阅读