首页 > 工程造价 > 拱桥问题

头条推荐

拱桥问题

2024.12.28

精品文献

拱桥问题
二次函数的运用(4)【拱桥问题】

二次函数的运用(4)【拱桥问题】

格式:pdf

大小:164KB

页数: 3页

评分:

§6.4 二次函数的运用( 4)【拱桥问题】 学习目标 : 1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。 2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最 大值、最小值。 学习重点 :应用二次函数最值解决实际问题中的最大利润。 学习难点 : 能够正确地应用二次函数最值解决实际问题中的最大利润.特别是把握好自变 量的取值范围对最值的影响。 学习过程 : 一、预备练习: 1、如图所示的抛物线的解析式可设为 ,若 AB∥ x 轴,且 AB=4 ,OC=1,则点 A 的坐标为 ,点 B 的坐标 为 ;代入解析式可得出此抛物线的解析式 为 。 2、 某涵洞是抛物线形,它的截面如图所示。现测得水面宽 AB=4m,涵洞顶点 O到水面的距离为 1m,于是你可推断点 A 的坐标是 ,点 B 的坐标为 ;根据图 中的直角坐标系内,涵洞所在的抛物线的函数解析

二次函数的运用(4)【拱桥问题】

二次函数的运用(4)【拱桥问题】

格式:pdf

大小:164KB

页数: 3页

评分:

§6.4 二次函数的运用( 4)【拱桥问题】 学习目标 : 1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。 2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最 大值、最小值。 学习重点 :应用二次函数最值解决实际问题中的最大利润。 学习难点 : 能够正确地应用二次函数最值解决实际问题中的最大利润.特别是把握好自变 量的取值范围对最值的影响。 学习过程 : 一、预备练习: 1、如图所示的抛物线的解析式可设为 ,若 AB∥ x 轴,且 AB=4 ,OC=1,则点 A 的坐标为 ,点 B 的坐标 为 ;代入解析式可得出此抛物线的解析式 为 。 2、 某涵洞是抛物线形,它的截面如图所示。现测得水面宽 AB=4m,涵洞顶点 O到水面的距离为 1m,于是你可推断点 A 的坐标是 ,点 B 的坐标为 ;根据图 中的直角坐标系内,涵洞所在的抛物线的函数解析

热门知识

拱桥问题

精华知识

拱桥问题

最新知识

拱桥问题
加载更多>>
加载更多>>

专题概述

拱桥问题知识来自于造价通云知平台上百万用户的经验与心得交流。登录注册造价通即可以了解到相关拱桥问题 更新的精华知识、热门知识、相关问答、行业资讯及精品资料下载。同时,造价通还为您提供材价查询、测算、询价云造价等建设行业领域优质服务。

相关推荐

立即注册
免费服务热线: 400-823-1298