选择特殊符号
选择搜索类型
请输入搜索
F119在设计中遵循“采用经过验证的技术”的做法,以及整台发动机结构简单,零部件数目少。它不但在性能方面较前一代发动机F100有较大提高,也采用了一些以前发动机中未采用的设计,但它的可靠性却比F100的要高。
1982年,美国空军提出拟用于90年代中后期的下一代"先进战术战斗机(ATF)"计划,与当时的F-1 5等第三代战斗机相比,ATF除要求有好的机动性外,还要突出有良好的敏捷性,高的隐身性,超声速巡航与短距起降能力等。相应地对用于ATF的发动机则要求推重比达到10.0一级,中间推力要高,要采用矢量喷管等。当时有由洛克希德、波音和通用动力三公司联合提出的YF-22方案与由诺斯罗普、麦道两公司联合提出的YF-23方案参与投标竞争。发动机方面则有美国普惠公司与GE公司为主,分别提出推重比为10.0一级、推力为133.6 kN的PW5000(XF119)、GE37(XF120)发动机参与竞争。
XF119发动机零组件的生产始于1985年9月,第1台发动机FX601于1986年10月进行首次台架试车。为了飞机进行飞行评估,两公司又分别发展了用于飞行试验的发动机YF119、YF120。经过几年的开发研制,1990年6月、9月YF-23(装YF119,YF-120)、YF-22(装YF119、YFl20)相继首飞进行对比飞行验证评估,1991年4月23日美国空军宣布选中装普惠公司YF119的YF-22作为ATF的机型。1991年8月YF-22进入"工程制造和发展(EMD)"阶段。从此,飞机被命名为F-22,发动机被命名为F119。在ATF飞机研制过程中,飞机重量与阻力均增加较多,为此,要求发动机的推力相应提高近1 7%,即最大推力(加力推力)要求为156 kN,中间推力(不开加力时最大状态下的推力)为105 kN,F119发动机采取了将XF119的风扇直径稍作增加以提高15%的风扇空气流量,来满足推力增大的要求.为此发动机的涵道比由0.25增至0.30。按美国军用标准MIL-SID-879(1968),F119的第1种生产型发动机被命名为F119-PW-100。
XF119、YF119在进入EMD阶段前总共完成了3000余小时的整机试车,到1998年6月共进行了 8 000余小时整机试车。当转入EMD阶段时(1991年8月3日),普惠公司获得研制9台F119试验发动机与39台飞行试验发动机的13.75亿美元的EMD合同。按当时空军需要2000套以上的动力装置(包括备件)来计算,普惠公司将获得120亿美元的收入。1999年12月17日首台EMD阶段的F119发动机进行首次试车,1997年9月7日装F119-Pw-100的F-22战斗机进行了首飞,开始了长达数年的飞行试验计划。
3.1风扇(3级)
第1级风扇叶片采州宽弦、空心设计,与用于波音777的Pw4084发动机采用的空心叶片结构相同,即叶片由叶盆、叶背两块型板经扩散连接法连接成一整叶片,在连接前,先将两板接合面处纵向地铣出几条槽道形成空腔,参见图7。这种空心叶片的空心度较罗·罗公司采用的带蜂窝芯的夹层结构小。用钛合金制的3级风扇转子均采用了整体叶盘结构(在YF-22进行验证飞行时所用的发动机YF119中,仅2,3级风扇采用了整体叶盘)。F119采用了线性摩擦焊的加工方法加工整体叶盘,罗·罗公司也采用这种加工方法。
线性摩擦焊(Linear Friction Welding,LFW)是一种固态连接技术,类似于扩散连接(Diffusion Bonding)。扩散连接是将两个需连接的零件的连接面紧紧靠住,在高温、高压下,两零件配合表面间形成了材料原子的相互转移,最终使两者紧密连接成一体。在这种连接中,由于相连接处的材料并未熔化.因而不会出现一般焊接中易发生的脱焊现象。从结构上讲,连接处看不出"焊缝"来,且其强度与弹性均优于本体材料。线性摩擦焊与扩散连接不同处在于:在扩散连接中,连接的工件是在炉中加温使其达到高温的;而在线性摩擦焊中,工件的高温是通过两配合面间的相互高频振荡产生的。
整体叶盘线性摩擦焊的加工过程及采用这种加工工艺带来的好处,可参阅"一种整体叶盘的加工方法--线性摩擦焊"。
在F119发动机中,为保证风扇机匣刚性均匀,保持较均匀的叶尖间隙,风扇机匣做成整环的,为此风扇转子做成可拆卸的,即2级盘前后均带鼓环,分别与1.3级盘连接。
风扇进口处采用了可变弯度的进口导流叶片,其结构类似于F100。由图6可以看出,三级静子均采用了弯曲设计,这种叶片是利用普惠公司开发的NAsTAR程序设计的,它可以大大缩小常规直静子叶片上下端的分离损失区,如图8所示。采用弯曲静子叶片后可提高风扇、压气机效率与喘振裕度。弯曲静子叶片也用于F119的高压压气机及民用的PW4084发动机中。
3.2高压压气机(6级)
采用了高级压比设计,6级转子全采用整体叶盘结构。进口导叶与1,2级导叶是可调节的,前机匣采用了"Alloy c"阻燃钛合金以降低重量。静叶也采用了弯曲的静叶。为增加高压压气机出口处机匣(该处直径最小,形成了缩腰)的纵向刚性,燃烧室机匣前伸到压气机的3级处,使压气机后机匣具有双层结构,外层传递负荷,内层仅作为气流的包容环,这种结构在大型、高涵道比涡轮风扇发动机中得到广泛采用。
3.3燃烧室(短环形)
火焰筒为双层浮壁式,外层为整体环形壳体,在壳体与燃气接触的壁面上铆焊有薄板,薄板与壳体间留有一定的缝隙,使冷却两者的空气由缝中流过。为了使薄板在工作中能在圆周与长度上自由膨胀,薄板在圆周与长度上均切成一段段的,形成多片瓦块状的薄板,因此这种火焰筒又可称为瓦块式火焰简。
采用浮壁式火焰筒可改善火焰筒的工作条件,不仅可提高火焰筒的寿命,与燃气接触的瓦片烧坏后还可更换,而且还可使排气污染物减少。这种结构已在V2500、PW4084等民用发动机上采用。
喷嘴采用了气动式喷嘴,它能改善燃油雾化质量提高燃烧完全度,减少排污,同时还能消除一般离心式喷嘴易生积炭的问题,图9示出了气动式喷嘴的示意图。
3.4高低压涡轮(单级)
高压涡轮的工作叶片用普惠公司的第三代单晶材料做成,采用了先进的气膜冷却技术。
涡轮盘采用了双重的热处理以适应外缘与轮心的不同要求,即外缘采用了提高损伤容限能力的处理,以适应榫槽可能出现的微裂纹;轮心部分则采用提高强度的热处理,这种在一个零件上采用两种要求不同的热处理,实属罕见。工作叶片叶尖喷涂有一层耐磨涂层(在XF119上投有采用),以减少性能的衰退率,这种措施在民用大型涡轮风扇发动机中应用较多。
低压涡轮与高压涡轮转向相反。这种将高低压转子做成转向相反的设计,当飞机机动飞行时作用于两转子上的陀螺力矩会相互抵消大部分,因此可减少外传到飞机机身的力矩,可提高飞机的操纵性,这点对高机动性能战斗机特别重要;另外对装于两转子间的中介轴承,轴承内外环转向相反时,会大大降低保持架与滚子组合体相对内外环的转速,对轴承的工作有利,但增加了封严的难度。理论上,高低压涡轮反向转动时,可以不要低压涡轮导向器(YF120上即无),但F119上仍然采用了导向器。低压涡轮轮盘中心开有大孔,以便安装高压转子的后轴承(中介轴承),这与F404、M88发动机的结构类似。
3.5加力燃烧室
加力燃烧室(分三区)、尾喷管(二元收敛~扩张矢量喷管)和燃油控制系统
加力燃烧室筒体采用Alloy C阻燃钛合金以减轻重量,简体内作有隔热套筒,两者间的缝隙中流过外涵空气对简体进行冷却,在YF119上采用外部导管引冷却空气对筒体进行冷却,在F119上取消了外部导管。
喷管上下的收扩式调节片可单独控制喉道与出口面积,而且当上下调节片同时向上或向下摆动时,改变了排气流的方向,即改变推力的方向。发动机的推力能在飞机的俯仰方面正负20°内偏转,从+20°到一20°的行程中只需1 s。推力和矢量由双余度全权限数字电子控制系统控制,用由煤油作介质的作动筒来操纵。调节片设计成可减小雷达散射截面积;为减少红外信号,对调节片进行了冷却。尾喷管也采用Alloy C阻燃钛合金以减少重量。
燃油控制系统为第四代双余度全权限数字电子控制系统(FADEc),每台发动机有两套调节器,每套调节器有二台计算机,以确保调节系统高的可靠性。
4.1维修性
发动机在设计中特别加强了发动机的维修性,例如大部分附件包括燃油泵和控制系统均作为外场可换组件(LRU),而所有的每个LRU拆换时间不超过20min,所用的工具仅是11种标准手动工具,在外场维修时需进行拆装的紧固件不允许用保险丝、开口销,由于采用"B"型螺母,拧螺母时可不采用限扭扳手。孔探仪的座孔设计成无螺纹内置式的,所有导管、导线均用不同的颜色予以区分,滑油箱装有目视的油位指示器,连接件做成能快卸快装的设计。
所有的附件、导线和管路均在发动机下部每个外场可换组件均能直接达到。发动机设计成由第5百分位女姓(身高157cm体重45 kg)到第95百分位男性(身高188九体重91 kg)间的维修人员穿着防护服。于戴防护手套均能对装在飞机上的发动机进行日常的维护工作。
4.2可靠性
F119在设计中遵循"采用经过验证的技术"的做法,以及整台发动机结构简单,零部件数目少。因此虽然它在性能方面较前一代发动机F100有较大提高,也采用了一些以前发动机中未采用的设计,但它的可靠性却比F100的要高。
表5列出了F119发动机与F100- Pw -220发动机可靠性指标的比较,后者是在F100-Pw-100(原型)发动机的基础上,用牺牲性能来提高可靠性的改进型。
全称F119-PW-100,是为F-22A研制的双转子小涵道比加力涡扇发动机,采用可上下偏转的二维矢量喷管,上下偏转角度为20度,推力和矢量由数字电子系统控制。
修磨前应先清理气门、气门座与气门导管表面的积炭及其他污渍,并清洗干净。检查气门导管与气门杆部之间的配合间隙,使它合格。在此基础上,才能车或磨气门锥面,并铰削气门座锥面,然后进行研磨;若密封锥面损坏较轻...
一、严禁用高压水枪进行清洗虽然发动机舱内的部件很多都做了防水处理,但很多汽车均采用电子控制燃油喷射系统,发动机舱里会安装有发动机电脑、变速箱电脑、点火电脑及各种传感器和执行器等。如果这些电子原件接触到...
换发动机有3种来源。直接4S店的原型全新发动机。这是最豪气的方式,特别是对于年份比较久的发动机,甚至可能发动机的价格比二手车价格更高。优点是品质有保证,质保期长,在授权的4S店进行更换,师傅的经验也比...
F119发动机由3级风扇、6级高压压气机、带气动喷嘴、浮壁式火焰筒的环形燃烧室、单级高压涡轮与高压涡轮转向相反的单级低压涡轮、加力燃烧室与二维矢量喷管等组成。整台发动机分为:风扇、核心机、低压涡轮、加力燃烧窒、尾喷管和附件传动机匣等6个单元体,另外还有附件,FADEC及发动机监测系统,
与F119相竞争的YF120发动机为变循环发动机,在2级风扇后有一可调节的外涵出气环,在高压压气机中,第一级工作叶片做得较长成为风扇,称之为核心机传动的风扇,其后有流向外涵的出气环,在工作中始终是打开的,因此称主外涵出气环。在低工况时,两个外涵道均打开,使涵道比加大以获得低的耗油率;在大工况时,2级风扇后的可调节放气环关闭,发动机成为小涵道比涡轮风扇发动机,以增加单位推力。风扇到核心机间的压力匹配是通过装在加力燃烧室前的可变面积涵道引射器(VABI)将外涵气流引向加力燃烧室来达到。VABI除对加力燃烧室隔热屏进行冷却外,还将外涵多余的气流引射到尾喷管喉道前的排气气流中,以加大推力。
YF120的风扇、压气机均比F119少1级,且高低压涡轮间无导向叶片,因此YF120比F119少5排叶片。表4列出了GE公司的YF120与普惠公司的YF119结构上的主要差别。
F119总体结构设计中,与普惠公司以往的发动机相比,有两个突出的变化,其一是高压转子支承方式改用了GE公司惯用的形式,其二是高压涡轮采用了单级。
普惠公司在20世纪60年代后期开始研制的民用发动机(JT9D、PW2037和PW4000)及军用发动机(F100)中,高压转子均采用1-1-0支承方式,即高压压气机前为滚珠轴承,后支点设在高压涡轮前,即高压涡轮是悬臂支承的,该轴承的负荷是通过燃烧室机匣传出的。图5示出的F100-PW-100发动机的支承简图是其代表。这种设计不仅使发动机承力框架数多,而且高压涡轮由于要装轴承使轴径小、且涡轮盘是悬臂支承的,给转子动力学设计带来困难,
GE公司的发动机(军用的有F101,F110、F404,民用的有CFM56)中,高压转子则采用了1-0-1支承方式,即转子的后支点设在高压涡轮后,且采用了中介轴承,即该轴承的外环固定于高压转子上,内环固定于低压转子上。这种布局不仅可减少承力框架,而且高压涡轮轴轴径可做得很大,增加了转子刚性,它的缺点是中介轴承的润滑与封严较为复杂些。普惠在研制F119时,对高压转子的支承方案一改以往的做法,采用了GE公司在F110,F404中采用1-0-1且后支点用中介轴承的设计。图6示出了F119发动机简图,从中可以看出高低压转子的支承方式,同时还能看出各部什的主要设计特点。
普惠公司在该公司最新的民用发动机PW8000中也采用了1-0-1高压转子支承方式,这一设计变化,值得注意。
高压涡轮的设计中,普惠公司在20世纪60年代后期开始研制的发动机,例如它的大型、民用发动机JT9D、PW2037和PW4000以及军用发动机F100均采用了双级设计。这种设计,使每级涡轮的负荷小,涡轮效率要大些,但带来零件多,重量大的缺点。GE公司则在同时期研制的发动机(军用:F101、FllO和F404,民用:CFM56)中,均采用了单级高压涡轮,虽然涡轮效率稍低,但收到了使发动机的结构简单,零件教少,重量轻等好处。在F119设计中,普惠公司也一改以往的做法,采用了单级高压涡轮的设计(见图6).这一改变也是为了提高推重比。
上柴D6114发动机培训教材 (2)
上柴D6114发动机培训教材 (2)
上柴D6114发动机培训教材
上柴D6114发动机培训教材
F135发动机是F119发动机的衍生型。F119发动机由3级风扇、6级高压压气机、带气动喷嘴、浮壁式火焰筒的环形燃烧室、单级高压涡轮、高压涡轮转向相反的单级低压涡轮、加力燃烧室与二维矢量喷管等组成。整台发动机分为:风扇、核心机、低压涡轮、加力燃烧室、尾喷管和附件传动机匣等6个单元体,另外还有附件、FADEC及发动机监测系统。其加力推力155.7千牛,中间推力104.0千牛,总压比35,涵道比0.3,涡轮前温1850-1950K,最大直径1.13米,长度4.826米、重量1460千克。
F135发动机采用与F119发动机基本相同的核心机。为提高推力,增加了发动机的空气流量和涵道比,提高了发动机的工作温度;为了获得短距起飞和垂直着陆能力,垂直起降型增加了新颖的升力风扇、三轴承旋转喷管、滚转控制喷管。其3级风扇采用超中等展弦比、前掠叶片、线性摩擦焊的整体叶盘和失谐技术,在保持原风扇的高级压比、高效率、大喘振裕度和轻质量的同时,将风扇的截面面积增加了10%-20%。6级压气机与F119发动机的基本相同。
燃烧室在F119发动机三维高紊流度、高旋流结构的浮动壁燃烧室的基础上,采用了高燃油空气比燃烧室技术,在提供小的分布因子和所要求的径向剖面的同时,满足了效率目标。高、低压涡轮采用对转结构,“超冷”高压涡轮转子叶片和导流叶片采用计算流体力学(CFD)方法设计,利用高温材料(可能为CMSX-4铸造合金)铸造,已在改进的F119发动机上得到验证,在提高耐久性的同时,能够明显提高工作温度(约为110℃)。低压涡轮增加1级,变为2级,以适应增大的风扇带来的驱动负荷。
F135发动机推比10.5、加力推力19吨级别、最大推力(无加力)13吨级别、质量1700千克,其19吨的加力推力目前没有任何实际装备战斗机的加力涡扇发动机能够企及。不过值得一提的是,F135相对于F119虽然推力大幅度提高,但是实际上是在同样核心机基础上用流量、高速性能换推力。F135虽然推力超群,但是其高速性能却是下降的。
STOVL型F135-PW-600为了满足垂直起降要求,设计了升力风扇 发动机喷管下偏 调姿喷管的垂直起降动力方案。升力风扇由涵道、风扇、D形喷管、联轴器、作动装置和伺服系统组成,由主发动机F135的2级低压涡轮驱动;升力风扇直径为1.27m,可以向前偏转13°,向后偏转30°,在STOVL工作状态下使战斗机上方的冷气流以230kg/s的流量垂直向下喷出,产生90千牛的升力;3轴承偏转喷管垂直向下偏转(最多可偏转95度,可左右各偏转10度),产生71.1千牛的升力;该喷管可使发动机的排气从水平偏转到垂直甚至向前,可以使推力从水平方向偏转到垂直向后。
此外,每侧翼根处的滚转控制喷管利用发动机压气机的引气,也可提供16.7kN的推力;在控制杆端的喷管差动地打开和关闭,实现滚转控制;通过偏转喷管偏航实现偏航控制;通过升力风扇和发动机推力分离器实现俯仰控制。包括主发动机在内的整个推进系统的长度为9.37m,悬停总推力为175.3千牛,短距起飞推力为169.5千牛。
F135是由由美国普拉特·惠特尼公司研制的加力涡扇发动机,最大推力超过18吨(4万磅),F135发动机是基于F-22的F119发动机的核心机和主要结构研制的。由于海军陆战队与英国皇家海军预计采用的F-35B必须能够垂直起降,因此F135也可以加上向下弯折的三轴承旋转喷管。但是这个喷管只有在垂直起降的场合使用,可以大大地缩短起飞/降落距离。其他F-35则不使用这项设计。
F135使用了F119的核心机,配合高效的6级高压压气机,1级高压涡轮和高效的风扇(由一个2级的低压涡轮驱动)。F135采用了BAE系统公司的全权数字式发动机控制系统(FADEC),为了提高发动机的可靠性和可保障性,F135大量采用外场可替换部件(LRC),其零部件数量比F119减少了大约40%。按照计划,F135有三个不同的型号,F135一PW一100将作为F-35A空军型的动力系统;F135一PW一400将作为F-35C海军舰载型的动力;而F135一PW一600将作为F-35B海军陆战队短距起飞/垂直降落型的动力。
F135是由由美国普拉特·惠特尼公司研制的加力涡扇发动机,最大推力超过18吨(4万磅),F135发动机是基于F-22的F119发动机的核心机和主要结构研制的。由于海军陆战队与英国皇家海军预计采用的F-35B必须能够垂直起降,因此F135也可以加上向下弯折的三轴承旋转喷管。但是这个喷管只有在垂直起降的场合使用,可以大大地缩短起飞/降落距离。其他F-35则不使用这项设计。
F135使用了F119的核心机,配合高效的6级高压压气机,1级高压涡轮和高效的风扇(由一个2级的低压涡轮驱动)。F135采用了BAE系统公司的全权数字式发动机控制系统(FADEC),为了提高发动机的可靠性和可保障性,F135大量采用外场可替换部件(LRC),其零部件数量比F119减少了大约40%。按照计划,F135有三个不同的型号,F135一PW一100将作为F-35A空军型的动力系统;F135一PW一400将作为F-35C海军舰载型的动力;而F135一PW一600将作为F-35B海军陆战队短距起飞/垂直降落型的动力。