选择特殊符号
选择搜索类型
请输入搜索
外频和前端总线是两个不同的概念,之所以大家会混淆不清,就是因为在古老的Pentium年代,二者的频率值往往是相同的。
外频指的是CPU外部的时钟频率,CPU主频=外频X倍频。在Pentium时代,CPU的外频一般是60/66MHz,从Pentium II 350开始,CPU外频提高到100MHz。
而前端总线的速度指的是CPU和北桥芯片间总线的速度,表示了CPU和外界数据传输的速度。
之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。
随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此产生了DDR(Double Date Rate)技术和QDR(Quad Date Rate)技术,使得前端总线的频率成为外频的2倍(AMD的K7处理器)、4倍(Intel的奔腾处理至今酷睿处理器),从此之后前端总线和外频的区别才开始被人们重视起来。
"前端总线FSB"这个名称是由AMD 在推出K7 CPU时提出的概念,前端总线的速度指的是数据传输的速度,由于数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率,即数据带宽=(总线频率X数据位宽)÷8。
目前PC机上所能达到的前端总线频率有266MHz(AMD )、333MHz(AMD & Intel )、400MHz(AMD & Intel )、533MHz(Intel )、800MHz(Intel )、1066MHz(Intel )、1333MHz(Intel )、1600MHz(Intel )等几种,Intel 最新的至尊版处理器QX9770采用了1600MHz的前端总线,最大带宽为:1600×64÷8=12.8G/s。
前端总线频率越大,代表着CPU与北桥之间的数据传输量越大,更能充分发挥出CPU的功能。相反,较低的前端总线将无法供给足够的数据给CPU,这样就限制了CPU性能得发挥,成为系统瓶颈。
从AMD 的K8处理其开始,AMD 和Intel 两家内部总线发展开始分道扬镳,Intel 继续沿用FSB至今天的酷睿2CPU,而AMD 则开发出了HT总线(Hyper Transport)对抗Intel 。
HT总线是AMD 为K8平台专门设计的高速串行总线,它的发展历史可回溯到1999年,原名为"LDT总线"(Lightning Data Transport,闪电数据传输)。2001年7月,这项技术正式推出,AMD 同时将它更名为Hyper Transport。随后,Broadcom、Cisco、Sun、NVIDIA、ALi、ATI、Apple、Transmete等许多企业均决定采用这项新型总线技术,而AMD 也借此组建Hyper Transport开放联盟,从而将Hyper Transport推向产业界。
第一代:HT的工作频率在200MHz―800MHz范围,双向16位模式下,最大带宽可以达到6.4GB/s。
第二代:2004年2月,Hyper Transport技术联盟又正式发布了HT2.0规格,由于采用了Dual-data技术,使频率成功提升到了1.0GHz、1.2GHz和1.4GHz,双向16bit模式的总线带宽提升到了8.0GB/s、9.6GB/s和11.2GB/s。
第三代:2007年11月19日,AMD 正式发布了HT3.0 总线规范,提供了1.8GHz、2.0GHz、2.4GHz、2.6GHz几种频率,最高可以支持32通道。32位通道下,双向带宽最高可以达到41.6GB/s。
由于AMD 的HT3.0提供的最大带宽远远超过目前Intel 1600 FSB的带宽,为了对抗HT 3.0,Intel 另辟蹊径,提出了QPI总线。
我们前面计算过,1600FSB能够提供12.8G/s的带宽,但是如此高的带宽也仅仅只能满足DDR2 800双通道的内存的带宽要求(800 X 64 X 2 / 8=12.8G/s),如果此时搭配1066甚至更高的1333内存的话,FSB需要提高到更高的频率,且不说还有PCI总线、PCI-E总线、USB、SATA等多种设备也要占据一定的带宽。而在当前制作工艺和框架下,提升频率变的难上加难,即便有些玩家将FSB提高到了2400,带来的发热量也是十分恐怖的。
随着处理器核心性能的提高,以及核心数量的急剧增长,FSB正在日益成为瓶颈,必须加以解决。Intel 要想在多核心时代处于不败之地,目前首要问题就是顺利解决系统资源的分配难题、充分发挥多核心的优势,这就是英特尔推出QPI总线技术的最终目的。
QPI最大的改进是提供了惊人的输出传输能力,在4.8至6.4GT/s之间。一个连接的每个方向的位宽可以是5、10、20bit。因此每一个方向的QPI全宽度链接可以提供12至16BG/s的带宽,那么每一个QPI链接的带宽为24至32GB/s,相当于1600FSB的2-3倍,基本和HT 3.0带宽持平。
此外,QPI另一个亮点就是支持多条系统总线连接,Intel 称之为multi-FSB。系统总线将会被分成多条连接,并且频率不再是单一固定的,也无须如以前那样还要再经过FSB进行连接。
QPI总线相对于FSB的革命意义是重大的,带来了PC机制造结构上的革新,抛弃了以往北桥南桥的概念,当然,这些变化已经不是本文所要探讨的主要问题了。
内部总线,将处理器的所有结构单元内部相连。它的宽度可以是8、16、32、64或128位。
如在CPU内部,寄存器之间和算术逻辑部件ALU与控制部件之间传输数据所用的总线称为片内总线(即芯片内部的总线)。
1.I2C总线
I2C(Inter-IC)总线1982年由Philips公司推出,是近年来在微电子通信控制领域广泛采用的一种新型总线标准。它是同步通信的一种特殊形式,具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。
2.SPI总线
串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口。Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。SPI总线是一种三线同步总线,因其硬件功能很强,所以,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。
3.SCI总线
串行通信接口SCI(serial communication interface)也是由Motorola公司推出的。它是一种通用异步通信接口UART,与MCS-51的异步通信功能基本相同。
无线通信的发展历程
无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入( Multiple Access)和双工(Multiplexing)。从 1G到 4G的无线通信系统演进史 基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。 给出了三种最典型的多址接入技术: FDMA、TDMA 和 CDMA 的比 较。 双工技术为用户同时接收和发送数据提供了可能性。 两种最典型 的双工技术: FDD 模式和 TDD 模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动 通信保持增长态势, 一些国家和地区增势强劲, 但存在发展不均衡的 现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工 作方式、管理方式、商贸方
中国内部审计三十年发展历程回顾
自从1983年我国建立内部审计制度,企业设立内部审计部门以来,内部审计已经走过了30年的发展历程。30年来,内部审计工作从无到有,内部审计队伍日益壮大,内部审计规范体系逐步建立和完善。30年来,在广大内部审计工作者的不懈努力下,内部审计作用和成果日益彰显,内部审计影响力不断增强,内部审计社会认可度不断提升,内部审计在促进企业内部控制、强化风险管理、提高经济效益和改善公司治理方面发挥着重要作用,取得了显著的成绩。
微机中总线一般有内部总线、系统总线和外部总线。内部总线是微机内部各外围芯片与处理器之间的总线,用于芯片一级的互连;而系统总线是微机中各插件板与系统板之间的总线,用于插件板一级的互连;外部总线则是微机和外部设备之间的总线,微机作为一种设备,通过该总线和其他设备进行信息与数据交换,它用于设备一级的互连。
路由器体系结构的发展
第一代路由器:集中转发,总线交换
典型产品:华为Quidway R2500系列路由器。
最初的IP网络并不大,其网关所需要连接的设备及其需要处理的负载也很小。这个时候网关(路由器)基本上可以用一台计算机插多块网络接口卡的方式来实现。接口卡与中央处理器(CPU)之间通过内部总线相连,CPU负责所有事务处理,包括路由收集、转发处理、设备管理等。网络接口收到报文后通过内部总线传递给CPU,由CPU完成所有处理后从另一个网络接口传递出去。
第二代路由器:集中 分布转发,接口模块化,总线交换
典型产品:华为Quidway R3600系列路由器。
由于每一个报文都要经过总线送交CPU处理,随着网络用户的增多,网络流量的增大,接口数量、总线带宽和CPU的瓶颈就越来越突出。于是很自然地想到如何提高网络接口数量,如何把CPU和总线的负担降下来?为了解决这个问题,第二代路由器就在网络接口卡上进行一些智能化处理,由于网络用户通常只会访问少数的几个地方,因此可以考虑把少数常用的路由信息采用Cache技术保留在业务接口卡上,这样大多数报文就可以直接通过业务板Cache的路由表进行转发,以减少对总线和CPU的需求。对于Cache中不能找到的报文送交CPU处理。
第三代路由器:分布转发,总线交换
典型产品:华为Quidway NetEngine 16/08系列路由器。
90年代以后Web技术的出现,使IP网络得到迅猛的发展。网络用户的访问面得到很大的拓宽,用户访问的地方已不像以前那样固定,这样往往出现无法从 Cache中找到路由的现象,于是总线和CPU瓶颈的问题再次出现。另外由于用户的增加,路由器的接口数量不足也暴露出来了。为了解决这个问题,第三代路由器应运而生。第三代路由器采用全分布式结构—路由与转发分离的技术,主控板负责整个设备的管理和路由的收集、计算功能,并把计算形成的转发表下发到各业务板;各业务板根据保存的路由转发表能够独立进行路由转发。另外总线技术也得到了较大的发展,通过总线、业务板之间的数据转发完全独立于主控板,实现了并行高速处理,使得路由器的处理性能成倍提高。
第四代路由器:ASIC分布转发,网络交换
典型产品:Juniper M40/160系列产品。
九十年代中后期,随着IP网络的商业化,Web技术出现以后,Internet技术得到空前的发展,Internet用户迅猛增加。网络流量特别是核心网络的流量以指数级增长,传统的基于软件的IP路由器已经无法满足网络发展的需要。以常见的主干节点2.5G POS端口为例,按照IP最小报文40字节计算,2.5G POS端口线速的流量约为6.5Mpps。而且报文处理中需要包含诸如QoS保证、路由查找、二层帧头的剥离/添加等复杂操作,以传统的做法是不可能实现的。于是一些厂商提出了ASIC实现方式,它把转发过程的所有细节全部采用硬件方式来实现。另外在交换网上采用了CrossBar或共享内存的方式解决了内部交换的问题。这样,路由器的性能达到千兆比特,即早期的千兆交换式路由器(Gigabit Switch Router,GSR)。
第五代路由器技术:网络处理器分布转发,网络交换
典型产品:华为Quidway NetEngine 80/40系列产品。
从上面的发展过程我们可以看到,每一次的技术进步都是因为随着业务发展而出现了新的需求。不过在前互联网络泡沫时代,主要的矛盾集中在路由器的转发性能上,所以前四代的路由器的最大进步在于速度。但是在宽带互联网一路高歌迅速发展的同时,作为其基础的IP网络技术的缺陷也就越来越充分地暴露出来。网络无管理无法运营的问题、IP地址缺乏问题、IP业务服务质量问题、IP安全等问题都在严重阻碍网络进一步发展。随着宽带互联网泡沫的破灭,人们进行了深刻的反省—业务才是网络的真正价值所在,一切的技术要求都应围绕着业务来进行。各种新技术也纷纷出现,比如网络管理技术、用户管理技术、业务管理技术、MPLS技术,VPN技术,可控组播技术、IP-QoS技术,流量工程技术等。
IP标准也在逐步修改成熟。随着新技术的出现和标准化的进展,对高速路由器的业务功能要求也越来越高。基于这些问题,第四代路由器采用ASIC技术的固有的不灵活、业务提供周期长等缺陷也不可避免地出现了。第五代路由器在硬件体系结构上继承了第四代路由器的成果,在关键的IP业务流程处理上采用了可编程的、专为IP网络设计的网络处理器技术。网络处理器(NP)通常由若干微处理器和一些硬件协处理器组成,多个微处理器并行处理,通过软件来控制处理流程。对于一些复杂的标准的操作(如内存操作、路由表查找算法、QoS的拥塞控制算法、流量调度算法等)采用硬件协处理器来提高处理性能。这样实现业务灵活性和高性能的有机结合。
第五代路由器满足IP业务发展要求
第五代路由器与第四代路由器相比较,主要有下面几个方面的特点。
● 采用网络处理器技术实现IP报文处理和转发,所以可以在保证高速转发的同时进行复杂的协议处理,从而支持丰富的业务。
● 由于具有网络处理器,可通过升级软件增加新的处理功能,从而快速响应用户的业务需求,适应网络发展。
● 具有强大的VPN、流分类、IPQoS、MPLS等特性的支持能力,提供完善的QoS机制,满足不同用户不同应用的需求。
● 采用大容量的交换网结构。
● 充分考虑电信用户的需求,满足用户对安全性、稳定性、可靠性的要求。
第五代路由器的出现,极大地满足了当前数据、语音、图像综合承载的需求,并大大增强了网络对MPLS VPN的支持能力。由于第五代路由器在业务特性上所具有的强大优势,所以已成为当前建设宽带骨干网络、汇聚网络的首选。随着成本的进一步降低与网络业务的进一步丰富,采用网络处理器技术的第五代路由器正在向网络的更低端发展。2100433B
我们知道网卡是用于连接计算机和计算机网络。网卡一般插在计算机大总线扩展槽上,卡上有连接计算机网络的接口。网卡物理上连接计算机内部总线,例如PCI,PCI-X,PCI-E,SUN的Sbus总线等,和计算机网络,例如以太网等。存储系统中也有类似的用于连接计算机内部总线和存储网络的设备。这种位于服务器上与存储网络连接的设备一般称为主机总线适配卡(Host Bus Adaptor)HBA。HBA是服务器内部的I/O通道与存储系统的I/O通道之间的物理连接。最常用的服务器内部I/O通道是PCI和Sbus,它们是连接服务器CPU和外围设备的通讯协议。存储系统的I/O通道实际上就是光纤通道。而HBA的作用就是实现内部通道协议PCI或Sbus和光纤通道协议之间的转换.