选择特殊符号
选择搜索类型
请输入搜索
对一般的矩阵来说,要把矩阵化成标准型才可以这样说。一个矩阵是半正定的是指该矩阵对应的实二次型f(x1,x2,...,xn)对任意的一组不全为零的实数c1,c2,...,cn都有f(c1,c2,...,cn)>=0.
1、对于半正定矩阵来说,相应的条件应改为所有的主子式非负。顺序主子式非负并不能推出矩阵是半正定的。
2、半正定矩阵
定义:设A是实对称矩阵。如果对任意的实非零列矩阵X有X*A*X≥0,就称A为半正定矩阵。
3、A∈Mn(K)是半正定矩阵的充分条件是:A的所有主子式大于或等于零。
定义 一个n× n的埃尔米特矩阵M是正定的当且仅当对于每个非零的复向量z,都有z*Mz > 0,则称M为正定矩阵,其中z* 表示z的转置矩阵。当z*Mz > 0弱化为z*Mz≥0时,称M是半正定矩阵由于 M是埃尔米特矩阵,经计算可知,对于任意的复向量z,z*Mz必然是实数,从而可以与0比较大小.
与正定矩阵相对应,一个n× n的埃尔米特矩阵M是负定矩阵,当且仅当对非零的复向量z都有:z*Mz < 0.
具有对称矩阵A的二次型f=x'Ax
如果对任何非零向量x,都有x'Ax≥0(或x'Ax≤0)成立,且有非零向量x0,使x0'Ax0=0,则称f为半正定(半负定)二次项,矩阵A称为半正定矩阵(半负定矩阵)
现在市场的价格战太离谱了,导致很多的商家都必须用低价来吸引客户,所以产品质量往往都得不到保障。力弘(LHLEEHAM)提供全系列会议视听系统矩阵切换控制器,包含产品有同轴矩阵系列AHD/TVI...
楼上恐怕还是不大了解,数字矩阵首先信号是数字信号,数字信号包括:SDI(标清)、HD-SDI(高清)这两种以前都是广播级信号,都是在广播电视应用的,但是现在随着电视会议的发展,已经出现高清电视会议系统...
vga视频矩阵,启耀科技有4,8,16,24,32,48,64路,您需要哪一路,每一路的价格不一样,输入输出路数越多价格越高,这种会议室用的很多的,切换很方便。
矩阵函数和函数矩阵
矩阵函数求导 首先要区分两个概念:矩阵函数和函数矩阵 (1) 函数矩阵 ,简单地说就是多个一般函数的阵列, 包括单变量和多变量函数。 函数矩阵的求导和积分是作用在各个矩阵元素上,没有更多的规则。 单变量函数矩阵的微分与积分 考虑实变量 t 的实函数矩阵 ( )( ) ( )ij m nX t x t ×= ,所有分量函数 ( )ijx t 定义域相同。 定义函数矩阵的微分与积分 0 0 ( ) ( ) , ( ) ( ) . t t ij ijt t d d X t x t X d x d dx dx τ τ τ τ ? ? ? ??? ???= =? ??? ?? ?? ? ?? ?∫ ∫ 函数矩阵的微分有以下性质: (1) ( )( ) ( ) ( ) ( )d d dX t Y t X t Y t dt dt dt + = + ; (2) ( ) ( ) ( )( ) ( ) ( )
由正定矩阵的概念可知,判别正定矩阵有如下方法:
1.n阶对称矩阵A正定的充分必要条件是A的 n 个特征值全是正数。
证明:若 , 则有
∴λ>0
反之,必存在U使
即
有
这就证明了A正定。
由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。
2.n阶对称矩阵A正定的充分必要条件是A合同于单位矩阵E。
证明:A正定
二次型 正定
A的正惯性指数为n
3.n阶对称矩阵A正定(半正定)的充分必要条件是存在 n阶可逆矩阵U使 ;进一步有 (B为正定(半正定)矩阵)。
证明:n阶对称矩阵A正定,则存在可逆矩阵U使
令 则
令 则
反之,
∴A正定。
同理可证A为半正定时的情况。
4.n阶对称矩阵A正定,则A的主对角线元素 。
证明:(1)∵n阶对称矩阵A正定
∴ 是正定二次型
现取一组不全为0 的数0,…,0,1,0…0(其中第I个数为1)代入,有
∴
∴A正定
∴存在可逆矩阵C ,使
5.n阶对称矩阵A正定的充分必要条件是:A的 n 个顺序主子式全大于零。
证明:必要性:
设二次型 是正定的
对每个k,k=1,2,…,n,令
,
现证 是一个k元二次型。
∵对任意k个不全为零的实数 ,有
∴ 是正定的
∴ 的矩阵
是正定矩阵
即
即A的顺序主子式全大于零。
充分性:
对n作数学归纳法
当n=1时,
∵ , 显然 是正定的。
假设对n-1元实二次型结论成立,现在证明n元的情形。
令 , ,
∴A可分块写成
∵A的顺序主子式全大于零
∴ 的顺序主子式也全大于零
由归纳假设, 是正定矩阵即,存在n-1阶可逆矩阵Q使
令
∴
再令 ,
有
令 ,
就有
两边取行列式,则
由条件 得a>0
显然
即A合同于E ,
∴A是正定的。
1.n阶对称矩阵A是负定矩阵的充分必要条件是A的负惯性指数为n。
2.n阶对称矩阵A是负定矩阵的充分必要条件是A的特征值全小于零。
3.n阶对称矩阵A是负定矩阵的充分必要条件是A的顺序主子式 满足。
即奇数阶顺序主子式全小于零,偶数阶顺序主子式全大于零。
由于A是负定的当且仅当-A是正定的,所以上叙结论不难从正定性的有关结论直接得出,故证明略。
1.n阶对称矩阵A是半正定矩阵的充分必要条件是A的正惯性指数等于它的秩。
2.n阶对称矩阵A是半正定矩阵的充分必要条件是A的特征值全大于等于零,但至少有一个特征值等于零。
3.n阶对称矩阵A是半正定矩阵的充分必要条件是A的各阶主子式全大于等于零,但至少有一个主子式等于零。
注:3中指的是主子式而不是顺序主子式,实际上,只有顺序主子式大于等于零并不能保证A是半正定的,例如:
矩阵 的顺序主子式 ,但A并不是半正定的。