选择特殊符号
选择搜索类型
请输入搜索
我国寒冷地区的既有住宅建筑多属砖混结构,建筑围护结构热工性能差、墙体不保温,造成了全年采暖空调能耗居高不下。改进建筑围护结构热工性能是节能改造的关键,而外墙节能在建筑节能中占有非常重要的位置,本文采用生命周期法对北方地区的城市居民楼简单的平屋顶住宅建筑进行能耗模拟,通过比较几组具有不同厚度保温层的负荷指标,分析了保温层厚度对建筑负荷的影响,并确定了最佳的经济保温层厚度。保温层“经济厚度”的计算方法, 不但考虑了传热基本原理, 而且考虑了保温材料的投资费用、能源价格、贷款利率、导热系数等经济因素对保温层厚度的影响。据生命周期分析法的原理,利用单位面积围护结构(仅考虑屋顶)的采暖总耗费的数学模型,得出了一个简单的保温层经济厚度的计算式。最后通过几组数据进行验证,并推广为其他常见保温材料的最佳保温层厚度,进一步验证所得结论的正确与合理性。
目前,我国对房屋建筑的保温隔热性能提出了更高的要求,而目前很多城市居民楼尚且都还是简单的平顶屋。外保温是目前大力推广的一种建筑保温节能技术。外保温与内保温相比,技术合理,有其明显的优越性,使用同样规格、同样尺寸和性能的保温材料,外保温比内保温的效果好。外保温技术不仅适用于新建的结构工程,也适用于旧楼改造,适用于范围广,技术含量高;外保温包在主体结构的外侧,能够保护主体结构,延长建筑物的寿命;有效减少了建筑结构的热桥,增加建筑的有效空间;同时消除了冷凝,提高了居住的舒适度。根据一系列的节能政策、法规、标准和强制性条文的指导下,我国住宅建设的节能工作不断深入,节能标准不断提高,引进开发了许多新型的节能技术和材料,在住宅建筑中大力推广使用。但我国目前的建筑节能水平,还远低于发达国家,我国建筑单位面积能耗仍是气候相近的发达国家的3倍~5倍。北方寒冷地区的建筑采暖能耗已占当地全社会能耗的20%以上,且绝大部分都是采用火力发电和燃煤锅炉,同时给环境带来严重的污染。所以建筑节能还是本世纪我国建筑业的一个重要的课题。而同时墙体和屋顶作为建筑物的重要围护物件, 而其保温层厚度又是决定于建筑保温水平的重要参数,于是针对增强保温性能和节省热能损失和能源浪费,设计最佳保温层厚度有着重要的意义。
建筑能耗在社会总能耗中占有很大的比例, 在西方发达国家, 建筑能耗占社会总能耗的 30 %~45 %,而我国在社会经济水平和生活水平都还不高的情况下, 建筑能耗已占到社会总能耗的 20 %~25 %, 正逐步上升到 30 %[1], 并且高的建筑能耗造成了大量化石燃料的使用, 带来了越来越严重的大气污染。为了减少建筑能耗, 目前国家正在实施建筑节能设计标准,提高建筑围护结构的保温性能。
墙体是外围护的主体, 要降低建筑物的能耗, 首先要考虑墙体的节能, 因此外保温复合墙体的保温层厚度设计也越来越引起大家的重视[1~2]。虽然提高外墙的保温性能可以减少建筑物的供热能耗费用, 但也会增加外墙的建设成本, 提高建设方的一次建设基金, 并
且保温层的使用寿命是有限的, 因此不能无限制的加大保温层厚度去减少能耗费用, 而要合理选择保温层的厚度使外墙在保温层生命周期内所造成的采暖能耗费用和保温层造价之和最低。
屋顶由里向外的结构是0.1(cm)涂料,1.5(cm)水泥砂浆20(cm)楼板,2(cm)水泥砂浆,珍珠岩保温层,2(cm)水泥砂浆,1(cm)三毡四油防水材料。北方地区这样的屋顶,夏季太阳日照下的表面温度最高可以达到摄氏75度,冬季为摄氏零下40度。为了保持室内有较好的舒适温度,又不造成浪费,设计最佳保温层厚度及选择最佳保温材料。
a. 假设研究对象为室内空气维持在设定适宜值的空调建筑。
b. 冬季建筑物采暖热负荷包括围护结构的耗热量和冷风渗透的耗热量,其中认为冷风渗透的耗热量不直接影响围护结构的热阻,而在计算保温层最佳厚度时只考虑屋顶耗热量的影响。
c. 假设屋顶结构体及保温层材料均匀,热传导系数是常数。
d. 室内温度和室外温度保持不变,且热传导过程已处于稳定状态。
e. 室内空气与围护结构内表面之间允许温度差摄氏4度,即在冬季平顶屋室内空气比内墙壁高4摄氏度。
f. 北方地区屋顶,夏季太阳日照下的表面温度最高达摄氏75度,冬季为摄氏零下40度。
模型中使用的主要参数说明
Q 单位面积的透过屋顶损失的热量,W/ m2
K 围护结构的传热系数,W/(m2·℃)
ΔT 室内外温差,℃。
Qn 年采暖耗热量,J/m2
HDD 采暖度日数,℃·d
Ri 由里到外屋顶结构材料的传热阻,m2·K/W
R 保温层的热阻,m2·K/W
di 由里到外屋顶结构材料的厚度,m
d 保温层的厚度
i 材料各层的导热系数,W·m/K
λ 保温层的导热系数,W·m/K
W 单位面积年采暖总费用,¥/ m2;
WT 单位面积保温层的投资费用,¥/ m2;
WN 单位面积年采暖耗热费用
WY 单位面积采暖年运行费用,¥/ m2·a
PWF 贴现系数
i 银行利润
I 现贴率
g 通货膨胀率
N 使用年限
P 单位体积保温材料的造价
C 单位时间的电价,¥/h
H 空调单位面积单位时间的发热量, J/h
η 采暖系统的总效率
Vi 采暖或降暖日数,d
(1)厚度为d的均匀介质,两侧温度差为ΔT,则单位时间由温度高的一侧向温度低的一侧通过单位面积的热量Q与ΔT成正比,即: Q=kΔT, k为热传导系数,其中k= ,R为介质的传热阻
(2)PWF-贴现系数(Present Worth Factor),是把今后某一日期收到或支付的款项,折算为现值的过程。一元资金在不同时期的现值,叫做贴现系数,即将资金的将来值折算成现值。
(3)所谓采暖度日数 HDD(Heating Degree Days) 是指一段时间 ( 月、季或年 ) 日平均温度低于 65 °F(18.3 ° C) 的累积度数。如果日平均温度高于 65 °F,那么这一天无采暖度日数。
问题的分析
屋顶是建筑物的重要围护结构,为确保其保持室温,减少热损的功能. 尤其是在严寒地区,在保证寒冷地区冬季室内气温达到应有的标准的情况下,还需把其采暖费用作为重要考虑因素。保温层厚度是决定建筑保温水平的重要参数。一般随着保温层厚度的增加,围护结构的绝热性能提高,从而降低建筑负荷,采暖设备造价和采暖系统运行费用也相应降低;但同时,围护结构的建造费用也相应增加,因此,一定存在某一特定的保温层厚度,即经济厚度d ,使建筑物总费用(建造费用和经营费用之和)最小。于是考虑建立关于总费用W的目标函数,其包括保温层的投资费用和采暖耗热费用,其中对于采暖好热费用,考虑经济和节能,采用生命周期法,建立节能建筑设计的数学模型。建立关于保温层厚度d的关系式,得到计算经济厚度的关系,使得目标函数W最小,对应的即为最佳厚度d。由此得到最佳保温厚度,变换保温材料时只需替代导热系数,结合数据得到最佳保温材料。
不同材料的保温层最佳厚度的比较分析
不同材料保温层的最佳厚度
实际上保温效果:聚氨酯泡沫最好,挤塑板次之,苯板最差;
耐冷热性能:聚氨酯泡沫最好,挤塑板次之,苯板最差;
吸水率(性):挤塑板最低,聚氨酯次之,苯板最易吸水;
使用寿命:聚氨酯泡沫最长,挤塑板次之,苯板最差;
价格:聚氨酯泡沫最高,挤塑板次之,苯板最低;
聚氨酯现场发泡(喷涂)可直接现场喷涂成型(液体膨胀),成型、运输方便;其他两种板材需要运输、粘贴,较为麻烦且会存在一定的破损,有拼接缝存在。
对于室内外的温差计算,本文采用室内达到适宜温度时与外界最高温差的一半作为一段时间内的平均温差,然而实际上温度差随着外界气候、环境、时间等因素时刻发生变化。为此,对于室外温差的计算应考虑建立动态负荷和保温层厚度之间的关系式。
本文是是着重从经济学的角度来确定最佳保温层厚度。然而实际上保温层厚度的选择不仅关系到节约能源问题,同时也关系到环境保护问题,能源日益短缺的及国内乃至世界日趋严重的近日更加显得重要和必须。倘若在围护保温层材料的选择上考虑其对环境的影响,以及其所需消耗热源燃料产生的污染物量进行评估,使得选取的厚度在经济和环境的效益最佳。
在设置集中采暖的建筑物,其围护结构的传热阻除了根据技术经济的比较确定,而且要符合国家有关节能标准的要求,对于居住平顶屋等建筑围护结构的最小热阻应按一下计算公式计算的结构进行附加,其最小的传热阻按以下计算确定:
Rmin——围护结构最小传热阻(m2·K/W)
ti——冬季室内计算温度,一般取20°C。
te——围护结构冬季室外计算温度,单位:°C。
n——温差修正数系数,外墙,平屋顶取1.00。
ΔT——室内空气与围护结构内表面之间的允许温差°C。
Rk——围护结构内表面换热阻(m2·K/W)
于是,在所建模型中增加评估条件:最小保温层厚度d应满足 ,这在实际工程中,对于围护保温层的厚度确定亦有着重要的意义。
由于实际情况的千变万化,因此我们得到的数据和假定的在实际操作中总存在着微小的误差,因此一个好的模型绝不能由这些微小变动而导致结果的较大改变。为了我们所做的模型能进行比较全面的测试,同时考虑到实际情况,我们选用适宜参数的条件下,设定了一些合理的初始条件,利用计算机进行模型检验,得到包括珍珠保温层在内的一系列保温材料的最佳保温厚度,并且其计算结果亦与实际工程设计中采用的保温层厚度比较接近。
保温层厚度的选择关系到节能建筑的造价和运行成本的经济性问题。生命周期耗费分析法计算保温层经济厚度的数学模型,考虑了建筑物在其生命周期中的采暖能耗,具有科学简单、方便等特点。当缺少采暖系统数据资料时,利用设计规范针对性和适应性较好,对于工程设计具有一定的参考和应用价值,可用于新建或旧有建筑改造以及新型保温材料的设计计算。但是在呼吁以人为本,全面协调可持续发展的今天,从经济和环境两方面综合考虑保温层厚度,应该更为合理,意义更为重大。
我国寒冷地区的既有住宅建筑多属砖混结构,建筑围护结构热工性能差、墙体不保温,造成了全年采暖空调能耗居高不下。改进建筑围护结构热工性能是节能改造的关键,而外墙节能在建筑节能中占有非常重要的位置,本文采用生命周期法对北方地区的城市居民楼简单的平屋顶住宅建筑进行能耗模拟,通过比较几组具有不同厚度保温层的负荷指标,分析了保温层厚度对建筑负荷的影响,并确定了最佳的经济保温层厚度。保温层"经济厚度"的计算方法, 不但考虑了传热基本原理, 而且考虑了保温材料的投资费用、能源价格、贷款利率、导热系数等经济因素对保温层厚度的影响。据生命周期分析法的原理,利用单位面积围护结构(仅考虑屋顶)的采暖总耗费的数学模型,得出了一个简单的保温层经济厚度的计算式。最后通过几组数据进行验证,并推广为其他常见保温材料的最佳保温层厚度,进一步验证所得结论的正确与合理性。
目前,我国对房屋建筑的保温隔热性能提出了更高的要求,而目前很多城市居民楼尚且都还是简单的平顶屋。外保温是目前大力推广的一种建筑保温节能技术。外保温与内保温相比,技术合理,有其明显的优越性,使用同样规格、同样尺寸和性能的保温材料,外保温比内保温的效果好。外保温技术不仅适用于新建的结构工程,也适用于旧楼改造,适用于范围广,技术含量高;外保温包在主体结构的外侧,能够保护主体结构,延长建筑物的寿命;有效减少了建筑结构的热桥,增加建筑的有效空间;同时消除了冷凝,提高了居住的舒适度。根据一系列的节能政策、法规、标准和强制性条文的指导下,我国住宅建设的节能工作不断深入,节能标准不断提高,引进开发了许多新型的节能技术和材料,在住宅建筑中大力推广使用。但我国目前的建筑节能水平,还远低于发达国家,我国建筑单位面积能耗仍是气候相近的发达国家的3倍~5倍。北方寒冷地区的建筑采暖能耗已占当地全社会能耗的20%以上,且绝大部分都是采用火力发电和燃煤锅炉,同时给环境带来严重的污染。所以建筑节能还是本世纪我国建筑业的一个重要的课题。而同时墙体和屋顶作为建筑物的重要围护物件, 而其保温层厚度又是决定于建筑保温水平的重要参数,于是针对增强保温性能和节省热能损失和能源浪费,设计最佳保温层厚度有着重要的意义。
屋顶由里向外的结构是0.1(cm)涂料,1.5(cm)水泥砂浆20(cm)楼板,2(cm)水泥砂浆,珍珠岩保温层,2(cm)水泥砂浆,1(cm)三毡四油防水材料。北方地区这样的屋顶,夏季太阳日照下的表面温度最高可以达到摄氏75度,冬季为摄氏零下40度。为了保持室内有较好的舒适温度,又不造成浪费,设计最佳保温层厚度及选择最佳保温材料。
a. 假设研究对象为室内空气维持在设定适宜值的空调建筑。
b. 冬季建筑物采暖热负荷包括围护结构的耗热量和冷风渗透的耗热量,其中认为冷风渗透的耗热量不直接影响围护结构的热阻,而在计算保温层最佳厚度时只考虑屋顶耗热量的影响。
c. 假设屋顶结构体及保温层材料均匀,热传导系数是常数。
d. 室内温度和室外温度保持不变,且热传导过程已处于稳定状态。
e. 室内空气与围护结构内表面之间允许温度差摄氏4度,即在冬季平顶屋室内空气比内墙壁高4摄氏度。
f. 北方地区屋顶,夏季太阳日照下的表面温度最高达摄氏75度,冬季为摄氏零下40度。
模型中使用的主要参数说明
Q 单位面积的透过屋顶损失的热量,W/ m2
K 围护结构的传热系数,W/(m2·℃)
ΔT 室内外温差,℃。
Qn 年采暖耗热量,J/m2
HDD 采暖度日数,℃·d
Ri 由里到外屋顶结构材料的传热阻,m2·K/W
R 保温层的热阻,m2·K/W
di 由里到外屋顶结构材料的厚度,m
d 保温层的厚度
i 材料各层的导热系数,W·m/K
λ 保温层的导热系数,W·m/K
W 单位面积年采暖总费用,¥/ m2;
WT 单位面积保温层的投资费用,¥/ m2;
WN 单位面积年采暖耗热费用
WY 单位面积采暖年运行费用,¥/ m2·a
PWF 贴现系数
i 银行利润
I 现贴率
g 通货膨胀率
N 使用年限
P 单位体积保温材料的造价
C 单位时间的电价,¥/h
H 空调单位面积单位时间的发热量, J/h
η 采暖系统的总效率
Vi 采暖或降暖日数,d
(1)厚度为d的均匀介质,两侧温度差为ΔT,则单位时间由温度高的一侧向温度低的一侧通过单位面积的热量Q与ΔT成正比,即: Q=kΔT, k为热传导系数,其中k= ,R为介质的传热阻
(2)PWF-贴现系数(Present Worth Factor),是把今后某一日期收到或支付的款项,折算为现值的过程。一元资金在不同时期的现值,叫做贴现系数,即将资金的将来值折算成现值。
(3)所谓采暖度日数 HDD(Heating Degree Days) 是指一段时间 ( 月、季或年 ) 日平均温度低于 65 °F(18.3 ° C) 的累积度数。如果日平均温度高于 65 °F,那么这一天无采暖度日数。
问题的分析
屋顶是建筑物的重要围护结构,为确保其保持室温,减少热损的功能. 尤其是在严寒地区,在保证寒冷地区冬季室内气温达到应有的标准的情况下,还需把其采暖费用作为重要考虑因素。保温层厚度是决定建筑保温水平的重要参数。一般随着保温层厚度的增加,围护结构的绝热性能提高,从而降低建筑负荷,采暖设备造价和采暖系统运行费用也相应降低;但同时,围护结构的建造费用也相应增加,因此,一定存在某一特定的保温层厚度,即经济厚度d ,使建筑物总费用(建造费用和经营费用之和)最小。于是考虑建立关于总费用W的目标函数,其包括保温层的投资费用和采暖耗热费用,其中对于采暖好热费用,考虑经济和节能,采用生命周期法,建立节能建筑设计的数学模型。建立关于保温层厚度d的关系式,得到计算经济厚度的关系,使得目标函数W最小,对应的即为最佳厚度d。由此得到最佳保温厚度,变换保温材料时只需替代导热系数,结合数据得到最佳保温材料。
在我们建立的模型中目标函数的总费用分两部分,即单位面积保温层的投资费用WT和单位面积采暖耗热费用WN。
WT的确定
已知单位体积保温层的造价P(包括保温材料费用,运输费用,施工费用,施工管理费用等),易得
其中d为保温层的厚度 (1)
年采暖耗热量费用
围护结构的传热系数K
根据公式概念有 , (2)其中Ri为围护结构建筑材料的传热阻,R为保温层的传热阻。
且易知R及Ri可由公式 算得,其中d为材料的厚度, 为材料的导热系数。
采暖度日数HDD
根据概念,为优化计算,冬季采暖度日数取为HDD20,即在一段时间的采暖日时间内平均温度低于20°C的累积度数。而在夏季降暖日数取为HDD25,即在一段时间内的降暖时间内高于25°C的累积度数,或者说如果日平均温度底于 25°C,那么这一天无降暖度日数。实际上也认为20°C与25°C分别为室内冬夏两季的适应温度。
对于采暖(降暖)度日数的计算方法有:
采用HDD=ΔT/2*V ,即取使室内达到适宜温度时最高温差的一半作为采暖(降暖)时间内的平均温差,其中ΔT为屋顶外表面的最低温度(最高温度)与室内冬季(夏季)适宜温度的差。V为采暖(降暖)总日数。
于是设屋顶外表面冬季最底温度为T1℃,夏季最高温度为T2℃ ,采暖日数为V1,降暖日数为V2,则有:
HDD20=(20-T1)/2*V1 (3)
HDD25=(T2-25)/2*V2 (4)
贴系数的确定
若g=i,PWF=(1+i)-1;
若g< i,则I=(i-g)/(1+g);
若g> i,则I=(g-i)/(1+i);
则有PWF=[1-(1+I)-N]/I (5)
单位面积年热损失Qn
单位面积年热损失用采暖度日数计算,一年分夏冬两个季节
(6)
=
3.4.6 单位面积采暖年运行费用WY
WY=
(7)
3.4.7单位面积年采暖耗热费用
(8)
综合(1)至(8)则有:
(9)
且如前所述,建筑采暖总费用W存在一个最小值d,其对应的厚度值即为所求最佳厚度d.
对W关于d求导数,有 ,求得
(10)
珍珠岩保温层的最佳厚度计算
以北方城市居民平顶屋住房为例,夏季取屋顶表面温度最高达摄氏75度,冬季为摄氏零下40度。在计算中选用格力 KFR-26GW/K(2658)D-N5空调,其参数: 功率:1P/制冷量:2600W。经换算得格力空调单位面积单位时间的发热量为H=0.72J/h。电价来源于长春供电局:C=0. 47 元/ kWh 。依据2007年的贷款利率为i=7.83%,通货膨胀率为g=4.8%,设定使用年限N=10.经计算可得:贴现系数PWF=8.58。认为年采暖日数为4个月,降暖日数为2个月,即有V1=120,V2=60,(单位:天)。
采用珍珠岩保温层,其导热系数在0.047-0.054(单位:w/m.k)之间,且造价为:186元/立方米,假定取 。取采(降)暖系统的总效率 。
表一:
屋顶围护结构 导热系数,W·m/K 厚度
mm 传热阻
m2·K/W
围护结构的传热系数
涂料 0.041 10 0.024
水泥砂浆 0.930 15 0.016
楼板 0.174 200 1.15
三毡四油防水材料 0.668 10 0.014
珍珠岩保温层 0.054 -- --
图一:珍珠岩保温层d与采暖总费用W关系
在建筑采暖过程中,实际上保温层的投资费用WT随保温层厚度d的增加呈线性增大,而年采暖(降暖)所用耗热费用WN与保温层厚度d之间是非线性关系,开始随d增大而迅速降低,当d达到一定值时,WN变得平缓,从而导致单位面积年采暖总费用W随着d的增加,先是减小而后增长,在d=28.15mm时取得最小值,即为满足(10)式的珍珠岩最佳保温层厚度。
此计算也同样适于其他保温材料最佳保温厚度的确定,在后文将作详细说明。
不同材料的保温层最佳厚度的比较分析
各常见保温材料导热系数及单位造价,及计算所得最佳厚度和年采暖费用如下表二:
保温层材料 导热系数,W·m/K
单位造价,
元/立方米 最佳厚度,
mm
单位面积年采(降)暖总费用,元
聚氨酯泡沫
0.020 580 9.70 11266.00
珍珠岩保温层 0.054 186 28.15 10484.15
苯板 0.047 300 20.68
12419.24
挤塑板 0.025 430 12.59
8934.74
聚氨酯保温板 0.028 320 15.46 8158.05
聚乙烯PEF 0.038 320 18.00
9501.77
图二:不同材料保温层的最佳厚度
实际上保温效果:聚氨酯泡沫最好,挤塑板次之,苯板最差;
耐冷热性能:聚氨酯泡沫最好,挤塑板次之,苯板最差;
吸水率(性):挤塑板最低,聚氨酯次之,苯板最易吸水;
使用寿命:聚氨酯泡沫最长,挤塑板次之,苯板最差;
价格:聚氨酯泡沫最高,挤塑板次之,苯板最低;
聚氨酯现场发泡(喷涂)可直接现场喷涂成型(液体膨胀),成型、运输方便;其他两种板材需要运输、粘贴,较为麻烦且会存在一定的破损,有拼接缝存在。
对于室内外的温差计算,本文采用室内达到适宜温度时与外界最高温差的一半作为一段时间内的平均温差,然而实际上温度差随着外界气候、环境、时间等因素时刻发生变化。为此,对于室外温差的计算应考虑建立动态负荷和保温层厚度之间的关系式。
本文是是着重从经济学的角度来确定最佳保温层厚度。然而实际上保温层厚度的选择不仅关系到节约能源问题,同时也关系到环境保护问题,能源日益短缺的及国内乃至世界日趋严重的近日更加显得重要和必须。倘若在围护保温层材料的选择上考虑其对环境的影响,以及其所需消耗热源燃料产生的污染物量进行评估,使得选取的厚度在经济和环境的效益最佳。
在设置集中采暖的建筑物,其围护结构的传热阻除了根据技术经济的比较确定,而且要符合国家有关节能标准的要求,对于居住平顶屋等建筑围护结构的最小热阻应按一下计算公式计算的结构进行附加,其最小的传热阻按一下计算确定:
式中 Rmin--围护结构最小传热阻(m2·K/W)
ti--冬季室内计算温度,一般取20°C。
te--围护结构冬季室外计算温度,单位:°C。
n--温差修正数系数,外墙,平屋顶取1.00。
ΔT--室内空气与围护结构内表面之间的允许温差°C。
Rk--围护结构内表面换热阻(m2·K/W)
于是,在所建模型中增加评估条件:最小保温层厚度d应满足 ,这在实际工程中,对于围护保温层的厚度确定亦有着重要的意义。
由于实际情况的千变万化,因此我们得到的数据和假定的在实际操作中总存在着微小的误差,因此一个好的模型绝不能由这些微小变动而导致结果的较大改变。为了我们所做的模型能进行比较全面的测试,同时考虑到实际情况,我们选用适宜参数的条件下,设定了一些合理的初始条件,利用计算机进行模型检验,得到包括珍珠保温层在内的一系列保温材料的最佳保温厚度,并且其计算结果亦与实际工程设计中采用的保温层厚度比较接近。
保温层厚度的选择关系到节能建筑的造价和运行成本的经济性问题。生命周期耗费分析法计算保温层经济厚度的数学模型,考虑了建筑物在其生命周期中的采暖能耗,具有科学简单、方便等特点。当缺少采暖系统数据资料时,利用设计规范针对性和适应性较好,对于工程设计具有一定的参考和应用价值,可用于新建或旧有建筑改造以及新型保温材料的设计计算。但是在呼吁以人为本,全面协调可持续发展的今天,从经济和环境两方面综合考虑保温层厚度,应该更为合理,意义更为重大。
首先保温层分为内墙保温和外墙保温。随着全球经济的发展,能源形势严峻,建筑节能已成为当今世界发展的潮流,更是当今世界发展的需要。在国内外,目前应用最多的建筑外墙围护结构节能措施即是外墙外保温系统。合适的外墙外保温层厚度可以提高建筑围护结构的保温隔热性能,降低建筑能耗。对外墙外保温系统保温层厚度的研究已成为一个重要的问题。 外墙保温是指,由保温材料组成,在外保温系统中起到保温隔热作用的构造层。依据国家颁布的节能标准,从2001年10月1日起规定,新规划的楼盘必须强制做外墙保温层。
保温层的主要作用就是起到房屋保温、隔热的作用。
屋面保温层
表 C1-3 技术交底记录 工程名称 交底部位 工程编号 日 期 交底内容: 屋面保温层 本技术交底适用于一般工业与民用建筑工程采用松散、板状保温材料和现浇整体保温的屋面 保温层工程施工。 1.材料要求 所用材料的表观密度、含水率、导热系数等技术性能必须符合设计要求和施工规范的规定。 应有质量证明文件。 松散的保温材料应使用无机材料,如选用有机材料时,要先做好材料的防腐处理。 (1)松散材料:炉渣或水渣粒径一般为 5~ 40mm,不得含有石块、土块、重矿渣和未燃尽 的煤块,表观密度为 500~800kg/m 3,导热系数为 0.16~0.25W/m. k。 (2)板状保温材料:外观整齐,厚度应根据设计要求确定,使用前应按设计要求检查其表观 密度导热系数,含水率及强度。 A.泡沫混凝土板:表观密度不大于 500 kg/m 3,抗压强度应不低于 0.4Mp
屋面保温层
屋面保温层 1. 施工流程 基层清理→弹线找坡、 分仓→管根固定→隔汽层施工→保温层铺 设 2. 操作工艺 2.1 清理基层:预制或现浇混凝土基层应平整、干燥和干净。 2.2 弹线找坡、分仓:按设计坡度及流水方向,找出屋面坡度走 向,确保保温层的厚度范围。保温层设置排气道时,按设计要求 弹出分格线来。 2.3 管根固定:穿过屋面和女儿墙等结构的管道根部,应用细石 混凝土填塞密实,做好转角处理,将管根部固定。 2.4 铺设隔汽层:有隔汽层的屋面,按设计要求选用气密性好的 防水卷材或防水涂料作隔汽层, 隔汽层应沿墙面向上铺设, 并与 屋面的防水层相连接,形成封闭的整体。 2.5 保温层铺设。 (1)铺设板状保温层。 1)干铺加气混凝土板、泡沫混凝土板块、蛭石混凝土块或聚苯 板块等保温材料,应找平拉线铺设。铺前先将接触面清扫干净, 板块应紧密铺设、铺平、垫稳。分层铺设的板块,其上下两层应 铺开;
要保证热力设备及管道经常处在散热损失最小的经济状态下运行,就必须选择合理的保温层和经常做好保温层的维护检修工作。一般保温层有主保温和敷面两层,常见的缺陷是裂缝和脱落。保温层的检修工艺及技术要求基本上与新敷设时相同。
主保温层是用保温材料(膨胀珍珠岩、膨胀蛭石、硅藻土或石棉等)或保温成型材料(保温瓦等),紧贴设备外壁严密敷设,以减少设备内的热量传外敌失。如主保温层有裂缝或脱落等现象时,应及时进行修补或重新敷设,敷设工艺及要求如下:
(1)在对设备及管道敷设主保温层前,应先将被保温设备表面上的旧保温层、灰尘和锈垢等杂物清除干净,并按设计要求涂刷防腐剂,待干燥后,再行施工。
(2)凡对直立的管道或设备敷设主保温层时,每隔2-3米,应装设一个分段承重托架,其宽度可稍小于主保温层。
(3)对大型设备或直径在650毫米及以上的管道(汽包除外)敷设主保温层时,必须焊接钩钉。在壁厚等于或小于4毫米的设缶上焊接钩钉时,应在设备或管道进行严密性试验前进行。段备上施敷主保温层,应在严密性试验后进行。
(4)当采用成型材料保温时,必须做到保温材料与设备表面接触紧密。若用板型制品对直径在450毫米以下的管道做保温层时,必须将板型保温晶锯成楔形板条敷砌。当主保温层的厚度大于或等于80毫米时,应分层敷砌。
(5)为使主保温层牢固不脱落,应用镀锌铁丝或铁丝网将敷设或修补部分紧紧地包裹住。
(6)主保温层必须保证有高度的密实性和均匀性,避免出现沉陷和空洞等。影响保温效果。
采用硬质保温制品的保温层,安装时,要把其制品如瓦在被包复的钢管上旋扭磨擦三次以上再就位,以保证弧度一致,结合严密;水平管纵向接缝位置应偏离管道垂直中心线。对于单层双瓦组合,纵缝要布在管中心竖直线45度以外;对于多层、多瓦组合,纵缝也应偏离管道垂直中心线。
一般可采用16号至18号镀锌铁丝双股捆扎捆扎的间距不应大于400mm。如公称直径等于或大于600mm的管道或相应设备,除一般捆扎外,要另用10号至14号镀锌铁丝或包装钢带加固,加固的间距宜为500mm。
按螺旋形缠绕,搭接长度应为带宽的1/2,缠时要拉紧。每条带缠完后,应用镀锌铁丝捆扎到管道上,再接缠第二条;缠第二层时,要压第一层的缝缠绕。用保温绳缠绕时,先把一端用镀锌铁丝捆扎到钢管上,再拉紧保温绳一股紧贴一股的缠绕。务使绳子付在管子上转动,绳股之间无间隙。绳的表面要复盖织物,并缝起来。也可在绳上敷设金属网,在网上抹灰,最后进行裱糊或涂刷涂料。
在管道上填充松散材料保温时,应设置固形层(亦称支承圈)。可用10×10×1~20×20×1的平织铁丝网或直接用金属保护层制做,在充填施工时,要防止漏料和固形层变形。充填施工时,应用木板条轻轻拍击固形层,以保证充填密实。当网与管道之间的下半部空间填满后,从下面穿过金属网及保温层安设镀锌铁丝吊件,并将吊件固定到管道上。然后,再填充上半部空间,填满后,把固形层封口固定。在垂直管道上进行充填施工时,应设置防沉层。防沉层用硬质保温制品制作,间隔高度为400mm~600mm。随充填保温到达防沉层高度时,把防沉层粘贴或支吊上去,再接着充填松散材料。
在管道外围敷设的能起保温、绝热作用的层结构,一般由以下几部分组成:1、防腐层:在管道外表面刷防锈漆两遍;2、保温层:保温、绝热材料层;3、防潮层:防止水汽进入保温层,一般用油毡包捆,沥青玛碲脂涂缝,通常用于冷管道;4、保护层:保护保温层不受损坏,通常用玻璃布缠绕于保间断层表面;5、着色层:在保护层外涂规定颜色,以区别管道内的流质。