选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

波分复用波分复用器

波分复用波分复用器

光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种

波分复用性能指标

其主要特性指标为插入损耗和隔离度

由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长λ12通过同一光纤传送时,在与分波器中输入端λ2的功率与λ1输出端光纤中混入的功率之间的差值称为隔离度。

波分复用光波分复用器特点&优势

充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。

具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。

对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。

由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。

有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。

系统中有源设备得到大幅减少,这样就提高了系统的可靠性

波分复用现状

由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的应用对于传统广播电视传输业务未出现特别紧缺的局面,因而WDM的实际应用还不多。但是,随着有线电视综合业务的开展,对网络带宽需求的日益增长,各类选择性服务的实施、网络升级改造经济费用的考虑等等,WDM的特点和优势在CATV传输系统中逐渐显现出来,表现出广阔的应用前景,甚至将影响CATV网络的发展格局。

查看详情

波分复用造价信息

  • 市场价
  • 信息价
  • 询价

多路复用器

  • SD FLASH 512MB MODULAR MUX
  • 菲尼克斯
  • 13%
  • 长沙市泽菲电气有限公司
  • 2022-12-06
查看价格

8路复用器

  • 详图纸图片
  • 大华
  • 13%
  • 浙江大华技术股份有限公司成都分公司
  • 2022-12-06
查看价格

多路复用器

  • MINI MCR-SL-MUX-V8-FLK 16
  • 菲尼克斯
  • 13%
  • 长沙市泽菲电气有限公司
  • 2022-12-06
查看价格

4路复用器

  • LRS2
  • 嘉荣
  • 13%
  • 深圳市嘉荣电子科技有限公司
  • 2022-12-06
查看价格

视频复用器

  • XF-RF604V类型:4路;参数:4路视频复用器,(一根线传输四路视频信号);
  • VANGUARD
  • 13%
  • 晟昊先锋科技(北京)有限公司
  • 2022-12-06
查看价格

波分析仪

  • F41
  • 台班
  • 韶关市2010年7月信息价
  • 建筑工程
查看价格

复用缆式线型感温探测器

  • JTW-LS-K82017
  • m
  • 湛江市2005年1月信息价
  • 建筑工程
查看价格

复用缆式线型感温探测器

  • JTW-LS-K82021
  • m
  • 湛江市2005年1月信息价
  • 建筑工程
查看价格

复用缆式线型感温探测器

  • JTW-LS-K82017
  • m
  • 湛江市2005年2月信息价
  • 建筑工程
查看价格

复用缆式线型感温探测器

  • JTW-LS-K82078
  • 湛江市2005年2月信息价
  • 建筑工程
查看价格

波分复用器

  • 1)4+1通道CWDM波分复用器,SC接口,定制波长(4+1):1450、1470、1490、1510、1310/1550
  • 4台
  • 3
  • 中档
  • 不含税费 | 不含运费
  • 2020-09-03
查看价格

波分复用器

  • 1550/1480nm
  • 9602根
  • 1
  • 中档
  • 含税费 | 不含运费
  • 2015-07-23
查看价格

波分复用器

  • 1550/1310nm
  • 1030根
  • 1
  • 中档
  • 含税费 | 含运费
  • 2015-05-21
查看价格

波分复用器

  • 1550/1310nm
  • 6161根
  • 1
  • 中档
  • 含税费 | 不含运费
  • 2015-12-18
查看价格

波分复用器

  • 1550/1480nm
  • 8053根
  • 1
  • 中档
  • 含税费 | 含运费
  • 2015-03-31
查看价格

波分复用简介

在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。

波分复用复用类型

光波分复用包括频分复用和波分复用

光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复用指光频率的粗分,光信道相隔较远,甚至处于光纤不同窗口。

波分复用结构

光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的

查看详情

波分复用发展过程

波分复用发展阶段

光纤通信飞速发展,光通信网络成为现代通信网的基础平台。光纤通信系统经历了几个发展阶段,从80年代末的PDH系统,90年代中期的SDH系统,WDM系统,光纤通信系统快速地更新换代。双波长WDM(1310/1550nm)系统80年代在美国AT&T网中使用,速率为2×17Gb/s。 应用WDM技术第一次把复用方式从电信号转移到光信号,在光域上用波分复用(即频率复用)的方式提高传输速率,光信号实现了直接复用和放大,并且各个波长彼此独立,对传输的数据格式透明。当前研究的热点之一是DWDM,DWDM实验室水平可达到100╳10Gbit/s,中继距离400km;30╳40Gbit/s,中继距离85km;64╳5Gbit/s,中继距离720km。密集波分复用DWDM商用水平为320Gbit/s,即一对光纤可传送400万话路。目前商用系统的传输能力仅是单根光纤可能传输容量为数十Tbit/s的1/100。

中国开展WDM技术的研究起步比较晚,首先在长途干线上采用WDM技术进行点到点扩容,后在节点上采用OADM、OXC技术进行上/下话路。中国于1997年引进第一套8波长WDM系统,并安装在西安至武汉的干线上。1998年中国开始大规模引进8×2.5Gb/sWDM系统,对总长达2万多km的12条省际光缆干线进行扩容改造。同时各省内干线也相继采用WDM技术扩容,如在“南昌-九江”光缆扩容工程中,采用的就是AT&T公司的设备和双窗口WDM系统,即在G.652光纤的1310nm、1550nm两个低损耗工作窗口分别运行一个系统。这样可在不拆除1310nm窗口原有PDH设备的情况下,利用未使用的1550nm窗口,加开SDH2.5Gb/s系统。为保证中国干线网的高速率、大容量并有足够的余量确保网络安全和未来发展的需要,采用WDM技术的工作已全面展开。

波分复用发展初期

90年代中期,WDM系统发展速度并不快

主要原因

TDM(时分复用)技术的发展,155Mb/s-622Mb/s-2.5Gb/sTDM技术相对简单。据统计,在2.5Gb/s系统以下(含2.5Gb/s系统),系统每升级一次,每比特的传输成本下降30%左右。因此在系统升级中,人们首先想到并采用的是TDM技术

波分复用器件不成熟。波分复用器/解复用器和光放大器在90年代初才开始商用化,1995年开始WDM技术发展很快,特别是基于掺铒光纤放大器EDFA的1550nm窗口密集波分复用(DWDM)系统。Ciena推出了16×2.5Gb/s系统,Lucent公司推出8×2.5Gb/s系统,目前试验室已达Tb/s速率。

波分复用发展迅速的原因

光电器件的迅速发展,特别是EDFA的成熟和商用化,使在光放大器(1530~1565nm)区域采用WDM技术成为可能

利用TDM方式已接近硅和镓砷技术的极限,TDM已无太多的潜力,且传输设备价格高

已敷设G.652光纤1550nm窗口的高色散限制了TDM10Gb/s系统的传输,光纤色散的影响日益严重。从电复用转移到光复用,即从光频上用各种复用方式来提高复用速率,WDM技术是能够商用化最简单的光复用技术。

查看详情

波分复用波分复用器常见问题

查看详情

波分复用技术原理

在模拟载波通信系统中,通常采用频分复用方法提高系统的传输容量,充分利用电缆的带宽资源,即在同一根电缆中同时传输若干个信道的信号,接收端根据各载波频率的不同,利用带通滤波器就可滤出每一个信道的信号。同样,在光纤通信系统中也可以采用光的频分复用的方法来提高系统的传输容量,在接收端采用解复用器(等效于光带通滤波器)将各信号光载波分开。由于在光的频域上信号频率差别比较大,一般采用波长来定义频率上的差别,该复用方法称为波分复用。WDM技术就是为了充分利用单模光纤低损耗区带来的巨大带宽资源,根据每一信道光波的频率(或波长)不同可以将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器)将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开的复用方式。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。将两个方向的信号分别安排在不同波长传输即可实现双向传输。根据波分复用器的不同,可以复用的波长数也不同,从2个至几十个不等,一般商用化是8波长和16波长系统,这取决于所允许的光载波波长的间隔大小。

WDM本质上是光频上的频分复用(FDM)技术。从中国几十年应用的传输技术来看,走的是FDM-TDM-TDM FDM的路线。开始的明线、同轴电缆采用的都是FDM模拟技术,即电域上的频分复用技术,每路话音的带宽为4KHz,每路话音占据传输媒质(如同轴电缆)一段带宽;PDH、SDH系统是在光纤上传输的TDM基带数字信号,每路话音速率为64kb/s;而WDM技术是光纤上频分复用技术,16(8)×2.5Gb/s的WDM系统则是光频上的FDM模拟技术和电频率上TDM数字技术的结合。

WDM本质上是光频上的频分复用FDM技术,每个波长通路通过频域的分割实现。每个波长通路占用一段光纤的带宽,与过去同轴电缆FDM技术不同的是:(1)传输媒质不同,WDM系统是光信号上的频率分割,同轴系统是电信号上的频率分割利用。(2)在每个通路上,同轴电缆系统传输的是模拟信号4KHz语音信号,而WDM系统目前每个波长通路上是数字信号SDH2.5Gb/s或更高速率的数字系统。

查看详情

波分复用主要特点

WDM技术具有很多优势,得到快速发展。可利用光纤的带宽资源,使一根光纤的传输容量比单波长传输增加几倍至几十倍;多波长复用在单模光纤中传输,在大容量长途传输时可大量节约光纤;对于早期安装的电缆,芯数较少,利用波分复用无需对原有系统作较大的改动即可进行扩容操作;由于同一光纤中传输的信号波长彼此独立,因而可以传输特性完全不同的信号,完成各种电信业务信号的综合与分离,包括数字信号和模拟信号,以及PDH信号和SDH信号的综合与分离;波分复用通道对数据格式透明,即与信号速率及电调制方式无关。

一个WDM系统可以承载多种格式的“业务”信号,如ATM、IP等;在网络扩充和发展中,是理想的扩容手段,也是引入宽带新业务(例如CATV、HDTV和B-ISDN等)的有利手段,增加一个附加波长即可引入任意想要的新业务或新容量;利用WDM技术实现网络交换和恢复,从而可能实现未来透明的、具有高度生存性的光网络;在国家骨干网的传输时,EDFA的应用可以减少长途干线系统SDH中继器的数目,从而减少成本。

查看详情

波分复用存在的问题

以WDM技术为基础的具有分插复用和交叉连接功能的光传输网具有易于重构、良好的扩展性等优势,已成为未来高速传输网的发展方向,很好的解决下列技术问题有利于其实用化。

WDM是一项新的技术,其行业标准制定较粗,因此不同商家的WDM产品互通性极差,特别是在上层的网络管理方面。为了保证WDM系统在网络中大规模实施,需保证WDM系统间的互操作性以及WDM系统与传统系统间互连、互通,因此应加强光接口设备的研究。

WDM系统的网络管理,特别是具有复杂上/下通路需求的WDM网络管理不是很成熟。在网络中大规模采用需要对WDM系统进行有效网络管理。例如在故障管理方面,由于WDM系统可以在光通道上支持不同类型的业务信号,一旦WDM系统发生故障,操作系统应能及时自动发现,并找出故障原因;目前为止相关的运行维护软件仍不成熟;在性能管理方面,WDM系统使用模拟方式复用及放大光信号,因此常用的比特误码率并不适用于衡量WDM的业务质量,必须寻找一个新的参数来准确衡量网络向用户提供的服务质量等。

一些重要光器件的不成熟将直接限制光传输网的发展,如可调谐激光器等。通常光网络中需要采用4~6个能在整个网络中进行调谐的激光器,但目前这种可调谐激光器还很难商用化。

查看详情

波分复用发展方向

WDM技术问世时间不长,但由于具有许多显著的优点迅速得到推广应用。建立一个以它和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。形成一个光层的网络既全光网,将是光通讯的最高阶段。全光技术的发展表现在以下几个方面:

波分复用可变波长激光器

光纤通信用的光源即半导体激光器只能发出固定波长的光波。将来会出现激光器光源的发射波长可按需要进行调谐发送,其光谱性能将更加优越,而且具有更高的输出功率、稳定性和可靠性。不仅如此,可变波长的激光器更有利于大批量生产,降低成本。

波分复用全光中继器

中继器需要经过光-电-光的转换过程,即通过对电信号的处理来实现再生(整形、定时、数据再生)。电再生器体积大、耗电多、成本高。掺铒光纤放大器虽然可以用来作再生器使用,但它只是解决了系统损耗受限的难题,而无法解决色散的影响,这就对光源的光谱性能提出了极高的要求。未来的全光中继器不需要光-电-光的处理过程,可以对光信号直接进行再定时、再整形和再放大,而且与系统的工作波长、比特率、协议等无关。由于它具有光放大功能,所以解决了损耗受限的难题,又因为它可以对光脉冲波形直接进行再整形,所以也解决了色散受限方面的难题。

波分复用光交叉连接设备

未来的OXC(光交叉连接)可以利用软件对各路光信号灵活的交叉连接。OXC对全光网络的调度、业务的集中与疏导、全光网络的保护与恢复等都将发挥作用。

波分复用光分插复用器

采用的OADM只能在中间局站上、下固定波长的光信号,使用起来比较僵化。未来的OADM对上、下光信号将完全可控,通过网管系统就可以在中间局站有选择地上、下一个或几个波长的光信号,使用起来非常方便,组网(光网络)十分灵活。

查看详情

波分复用波分复用器文献

可调谐双芯光子晶体光纤波分复用器设计 可调谐双芯光子晶体光纤波分复用器设计

可调谐双芯光子晶体光纤波分复用器设计

格式:pdf

大小:717KB

页数: 5页

数值分析了双芯光子晶体光纤的耦合特性,设计出0.85/1.55μm、0.98/1.55μm和1.3/1.55μm基于通信波段的波分复用器件,其光纤长度分别为542μm、996μm和932μm。在双芯光子晶体光纤的基础上,光纤长度固定不变时,通过调节中心空气孔材料折射率,材料折射率分别为1.281、1.343和1.348,实现对0.85/1.55μm、0.98/1.55μm和1.31/1.55μm波长的可调谐复用和解复用。

8路光纤复用器 8路光纤复用器

8路光纤复用器

格式:pdf

大小:717KB

页数: 4页

能把原来 1 根光纤扩充为 8 根光纤。 功能描述 CC-CW 系列光纤复用器可以用来增加网络的传输带宽和传输距离。可以使 网络容量在不影响原有业务的情况下迅速成倍地增加 , 同时大大提高网络的安 全性。具有光中继、波长转换、传输介质在单模光纤与多模光纤之间转换等功能。 它适用于在 10Mb/s~2.5 Gb/s 速率范围内各种数字信号 (SDH、ATM、以太网、 光纤通道 )和模拟信号在光纤中的复用传输和波长转换。 本说明书适用于所有 CC -CW 光波长转换器。 特性 u 标准: 支持全双工、半双工模式; u 波长:见附件一 u 光纤接口: CC-CW 系列光波长转换器可以匹配目前市面上所有 SFP,支持双纤连接或 单纤连接,波长转换数量和传输距离可选。 u 环境: 工作温度: -10~+50℃ 储存温度: -40~+85℃ u 湿度: 10~90%无冷凝 u 技术指标: 参数 单 位

CWDM波分复用器波分复用器

WDM是将一系列载有信息、但波长不同的光信号合成一束,沿着单根光纤传输;在接收端再用某种方法,将各个不同波长的光信号分开的通信技术。波分复用器采用的就是这个技术。

目录

一 名词解释

二 WDM

三 CWDMCWDM系统原理

CWDM系统的优点

CWDM产品存在的不足

CWDM的发展方向

四 DWDM

DWDM系统原理概述

DWDM结构分

DWDM光信道

光波分复用的技术特点与优

势如下充分利用光纤的低损耗波段具有在同一根光纤中传送多个信号的能力较强的灵活性恢复起来也迅速方便降低了成本提高了系统的可靠性

五 应用图

查看详情

复用技术波分复用

光通信是由光来运载信号进行传输的方式。在光通信领域,人们习惯按波长而不是按频率来命名。因此,所谓的波分复用(WDM,Wavelength Division Multiplexing)其本质上也是频分复用而已。

WDM是在1根光纤上承载多个波长(信道)系统,将1根光纤转换为多条“虚拟”纤,当然每条虚拟纤独立工作在不同波长上,这样极大地提高了光纤的传输容量。由于WDM系统技术的经济性与有效性,使之成为当前光纤通信网络扩容的主要手段。波分复用技术作为一种系统概念,通常有3种复用方式,即1 310 nm和1 550 nm波长的波分复用、粗波分复用(CWDM,Coarse Wavelength Division Multiplexing)和密集波分复用(DWDM,Dense Wavelength Division Multiplexing)。

(1)1 310 nm和1 550 nm波长的波分复用

这种复用技术在20世纪70年代初时仅用两个波长:1 310 nm窗口一个波长,1 550 nm窗口一个波长,利用WDM技术实现单纤双窗口传输,这是最初的波分复用的使用情况。

(2)粗波分复用

继在骨干网及长途网络中应用后,波分复用技术也开始在城域网中得到使用,主要指的是粗波分复用技术。CWDM使用1 200~1 700 nm的宽窗口,目前主要应用波长在1 550 nm的系统中,当然1 310 nm波长的波分复用器也在研制之中。粗波分复用(大波长间隔)器相邻信道的间距一般≥20 nm,它的波长数目一般为4波或8波,最多16波。当复用的信道数为16或者更少时,由于CWDM系统采用的DFB激光器不需要冷却,在成本、功耗要求和设备尺寸方面,CWDM系统比DWDM系统更有优势,CWDM越来越广泛地被业界所接受。CWDM无需选择成本昂贵的密集波分解复用器和“光放”EDFA,只需采用便宜的多通道激光收发器作为中继,因而成本大大下降。如今,不少厂家已经能够提供具有2~8个波长的商用CWDM系统,它适合在地理范围不是特别大、数据业务发展不是非常快的城市使用。

(3)密集波分复用

密集波分复用技术(DWDM)可以承载8~160个波长,而且随着DWDM技术的不断发展,其分波波数的上限值仍在不断地增长,间隔一般≤1.6 nm,主要应用于长距离传输系统。在所有的DWDM系统中都需要色散补偿技术(克服多波长系统中的非线性失真——四波混频现象)。在16波DWDM系统中,一般采用常规色散补偿光纤来进行补偿,而在40波DWDM系统中,必须采用色散斜率补偿光纤补偿。DWDM能够在同一根光纤中把不同的波长同时进行组合和传输,为了保证有效传输,一根光纤转换为多根虚拟光纤。目前,采用DWDM技术,单根光纤可以传输的数据流量高达400 Gbit/s,随着厂商在每根光纤中加入更多信道,每秒太位的传输速度指日可待。

查看详情

粗波分复用器简介

波分复用器

WDM是将一系列载有信息、但波长不同的光信号合成一束,沿着单根光纤传输;在接收端再用某种方法,将各个不同波长的光信号分开的通信技术。波分复用器采用的就是这个技术。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639