选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

表面态

在实际的半导体器件中,半导体材料不可能是无穷大的,总有一定的边界,因此表面(边界)效应对半导体器件的特性具有非常重要的影响。实际上,在多数情况下半导体器件特性是由半导体表面效应而不是体内效应决定。(如MOS)
理想表面是指表面层中原子排列的对称性与体内原子完全相同,且表面上不附着任何原子或分子的半无限晶体表面(即晶体的自由表面)。当一块半导体突然被中止时,表面理想的周期性晶格发生中断,从而导致禁带中出现电子态(能级),该电子态称为表面态(Tamm state)

表面态基本信息

表面态发展与现状

表面态是固体自由表面或固体间接口附近局部性的电子能态。由于固体表面原子结构不同于体内原子结构,使得表面能级既不同于固体体能带,也不同于孤立原子能级。半导体表面通常位于基本禁带中或禁带边缘附近,电子波函数在表面向内、向外都是衰减的。

塔姆(Tamm)态的概念最早是在1932年提出的。塔姆指出由于表面处晶格突然中断形成一阶跃势垒来描述一维半无限晶体中电子行为,且在真空区(Z0)仍具有布洛赫波性质。而且晶体布洛赫波函数与指数衰减波函数在表面处(Z=0)必须满足波函数及其一阶导数连续的条件,基于此条件解出能量表达式。当k取复数对应向体内方向衰减的定域在表面的电子态即塔姆态。

1935年Maue利用准自由电子(N.F.E)模型,用傅里叶级数展开晶体势函数,取波函数及其一阶导数在表面处连续的条件,证明波势k取复数时在晶带中有表面态存在条件。

1939年消克莱(Shockley)考虑具有两个终端的一维有限链晶体的电子态。并根据原子间距大小提出表面态存在条件。Shockley的研究表明,只有较低态是S态时才产生表面态(Shockley态)。它是由表面原子出现悬挂键而产生的本征表面态。

1939年戈德温利(Goodvain)用紧束缚(TB)模型,用原子轨道线性组合法(LCAO),同样由求解久期矩阵,得到表面态存在于能带的结论。

1947年巴丁(Bardeen)吉布尼发现,可以用一种电解质对半导体表面加电场来控制载流子。他们研究半导体锗的表面性质,把一只锗二极管浸在电解液里,并接上直流电源,发现有一部分电流是由锗表面附近的空穴流动而形成的。他们企图改进场效应的响应时间,却出乎意料地发现了晶体管效应。他们采用两根细金属丝与锗片的表面接触,两根丝分隔的距离很小时(0.005cm左右)发现一根丝与锗片之间有微小的电流变化,这就是晶体管的放大作用。由此他们两人发明了三极管,标志着现代电子技术的第二次飞跃。同时Bardeen提出了费米能级钉扎的概念。认为在半导体表面存在一些能级处理禁带中的本征表面态。它是半导体的费米能级在表面处钉扎在这些能级位置上,因而势垒在与金属接触前已经形成。不同功函数的金属与半导体接触不会明显改变势垒高度,这就是Bardeen模型。

1948年肖克莱和皮尔松(Pearson)为验证巴丁的假说设计了世界上最早的场效应实验装置。证明在表面电场的作用下,表面空间电荷的一部分会发生移动,但大部分不动,原因是这些电荷“陷阱”了表面态。

1957~1960年间,库特基和托马希克(Tomasck)等人用线性组合法(LCAO)较有成效地处理了理想晶体表面的各种局域态,发现肖克莱型表面态形成能带,其宽度很窄(0.2ev左右)。当表面势微扰相当强烈时表面态形成的能带会移到禁带中央以下。

1964年Pugh也采用线性组合法,完成了紧束缚模型的计算。计入了第一、二、三层近邻原子势的微扰作用,得到了金刚石(111)表面态能带的E~K关系,并计算了这种位于禁带中央附近的表面态能带态密度。发现表面态非常集中,在极窄的带宽中的状态占总数的90%以上。

1974年埃皮尔包姆(Appelbaum)和赫曼(Hamamn)对表面电子态的计算迈出了很重要的一步。他们采用了能很成功地计算体内能带的自洽赝势法,提出一种充分考虑表面上各种相互作用的表面势公式,反复协调表面势、表面电荷密度与表面能谱结构,对半导体表面电子结构进行了定量计算,取得了与实验一致性较好的结果。除此之外,Pandy和Phillips用LCAO方法对Si(111)表面态进行计算。得到与Appelbaum等用自洽赝势计算大致相符的结果。

还有Cohen等从另一角度,用自洽赝势方法计算表面能带。他们用无穷个十二层格点组成的薄片和真空薄片交替排列。这样组成的结构具有三维周期性,可以沿用计算三维晶体能带结构的方法。这种方法的优点是比较容易把表面的晶格重构考虑进去。后来,人们利用这种方法作了许多工作,并计算出各种表面重构的情况下系统的总能。从总能的极小值求出稳定的重构结构,并和实验进行比较得到了很好的结果。

自洽赝势方法用于表面计算的一个最新发展是Hybertsen和Louie用于准粒子方法来计算表面态。计算得到了As在Ge(111)面上形成的表面态与最近的角分辨光电子谱实验结果符合得十分好。说明准粒子方法不但可用于体能带的计算,而且在表面态的能量计算方面,也带来了很大的改进。

1977年Spicer等用光电子谱研究了CaAs半导体的表面电子结构。在CaAs(110)表面,As原子悬挂键被电子占据形成填满的表面带,而Ca原子的悬挂键则完全是空的,形成全空的表面带。表面吸附、外来原子或表面的不完整性(缺陷、台阶、杂质)都会产生表面态,被称为非本征表面态。近几年来,谢希德和同志们主要从事表面物理研究。对表面弛豫、表面吸附以及各种接口的研究取得了一定进展。他们用能量最低的原理研究CaAs(110)表面弛豫情况。通过一系列元素吸附前后表面结构的变化得出,CaAs(110)面费米能级的钉扎可能是由于吸附后表面驰豫减小,使表面态重新进入禁带的缘故,与法国和德国一些学派从实验角度得出的观点一致。国外原有的理论计算认为Cl只能吸附在Ge(111)面的三度开位上,而谢希德首次根据自己的计算提出Cl更可能吸附在Ge(111)面的顶位上。这一结论在1982年已为国外实验所证实。于是国际理论界重新做了计算,在1983年同意了他们关于Cl吸附在Ge(111)顶位的结论。除此之外他们还研究各种接口的电子态。由于硅化物具有较低的形成温度和较高的电导,大规模集成电路中有广泛的应用前景。因此她和同事们选择了镍硅化合物和硅界面为对象,做系统的理论研究,不仅搞清了镍在Si(111)和Si(100)表面吸附初始阶段的位置和电子特性,详细研究不同组分镍硅化合物的电子结构,得到镍硅化合物电子结构随组分的变化规律。这些研究能帮助人们了解表面的几何结构,外来原子或分子吸附引起的各种电子态的变化、电荷的再分布、化学键合等许多基本原理,是半导体表面电子态研究中的前沿。

查看详情

表面态造价信息

  • 市场价
  • 信息价
  • 询价

混凝土表面增强剂(粉剂)

  • 20/50kg规格包装;1kg/2平方/8次
  • kg
  • 金砼宝
  • 13%
  • 广州市砼宝科技有限公司
  • 2022-12-08
查看价格

混凝土表面增强剂(水剂)

  • 20/50kg规格包装;1kg/2平方
  • kg
  • 金砼宝
  • 13%
  • 广州市砼宝科技有限公司
  • 2022-12-08
查看价格

混凝土表面回弹增强剂(8-15mp)

  • 20kg/50kg规格包装;1kg/2平方
  • kg
  • 金砼宝
  • 13%
  • 广州市砼宝科技有限公司
  • 2022-12-08
查看价格

表面

  • 品种:玻璃纤维布;密度(kg/m3):30
  • m2
  • 金华恒
  • 13%
  • 贵阳金华恒化工有限公司
  • 2022-12-08
查看价格

门扇表面造型

  • 铣/压型
  • m2
  • 13%
  • 广州市锦澜消防设备有限公司(佛山市厂商期刊)
  • 2022-12-08
查看价格

表面活性剂KA

  • kg
  • 肇庆市2003年3季度信息价
  • 建筑工程
查看价格

表面活性剂

  • KA
  • kg
  • 韶关市2010年5月信息价
  • 建筑工程
查看价格

铝单板(表面涂层:氟碳漆)

  • 1.2mm厚
  • 湛江市2019年4季度信息价
  • 建筑工程
查看价格

铝单板(表面涂层:聚酯漆)

  • 1.5mm厚
  • 湛江市2014年4季度信息价
  • 建筑工程
查看价格

铝单板(表面涂层:聚酯漆)

  • 2.0mm厚
  • 湛江市2014年4季度信息价
  • 建筑工程
查看价格

竹木

  • Lx137x30厚瓷竹木
  • 10.81m³
  • 3
  • 中档
  • 含税费 | 含运费
  • 2022-09-22
查看价格

户外地板

  • 1850×137×18厚瓷户外地板(平面),专用不锈钢扣件缝隙3.(详图见附件T002图纸)
  • 1m²
  • 1
  • 中档
  • 不含税费 | 含运费
  • 2022-02-10
查看价格

氟碳喷涂表面处理

  • 氟碳喷涂表面处理
  • 800m²
  • 3
  • 阿克苏/PPG/威尔伯
  • 中档
  • 含税费 | 含运费
  • 2021-11-01
查看价格

氮/亚硝氮测定仪

  • 0-50mg/L,离子选择电极,带二次表,4-20mA,继电器故障报警,带RS485通讯接口
  • 1.0套
  • 3
  • 详细品牌见原档
  • 不含税费 | 不含运费
  • 2017-08-14
查看价格

  • 12mm厚
  • 50m²
  • 3
  • 中档
  • 含税费 | 含运费
  • 2021-11-10
查看价格

表面态分类

1)按来源分:

本征表面态:清洁表面(可存在再构 弛豫等)的表面态

非本征表面态:外来因素(如存在杂质原子、吸附物、晶格缺陷等)引入的表面态

2)按电子占据情况分

满态:已被电子占据的表面态

空态:未被电子占据的表面态

3)按带电类型分

类施主表面态:电子占据呈中性 不被电子占据带正电

类受主表面态:不被电子占据呈电中性 电子占据带负电

4)按与晶体体内交换载流子的时间常数分

快表面态:与体内快速交换载流子 弛豫时间<1ms

慢表面态:与体内缓慢交换载流子 弛豫时间1ms-100s

5)按能级位置分

束缚表面态:能级在体内禁带之中

表面共振态:能级与体内允许带部分或全部重合 且波函数与体内波函数产生共振

查看详情

表面态表面态的形成

1) 理想、清洁半导体表面:理想表面产生表面能级(表面态)的原因是塔姆(Tamm)首先提出的,他认为晶体的周期性势场在表面处发生中断引起了附加能级.因此,这种表面能级称为塔姆表面能级或塔姆能级(Tamm Level).塔姆曾计算了半无限克龙尼克–潘纳模型情形,证明在一定条件下每个表面原子在禁带中对应一个表面能级.上述结论可推广到三维情形,可以证明,在三维晶体中,仍是每个表面原子对应禁带中一个表面能级,这些表面能级组成表面能带.因单位面积上的原子数约为,故单位面积上的表面态数也具有相同的数量级.表面态的概念还可以从化学键的方面来说明.以硅晶体为例,因晶格在表面处突然终止,在表面的最外层的每个硅原子将有一个未配对的电子,即有一个未饱和的键.这个键称为悬挂键,与之对应的电子能态就是表面态.因每平方厘米表面约有个原子,故相应的悬挂键数也应为约个.表面态的存在是肖克莱等首先从实验上发现的.以后有人在超真空对洁净硅表面进行测量,证实表面态密度与上述理论结果相符。

2) 实际表面:在表面处还存在由于晶体缺陷或吸附原子等原因引起的表面态这种表面态的特点是其数值(表面态密度)与表面经过的处理方法及所处的环境有关。

查看详情

表面态常见问题

查看详情

表面态文献

带表面裂纹连续梁损伤识别的曲率模态小波分析 带表面裂纹连续梁损伤识别的曲率模态小波分析

带表面裂纹连续梁损伤识别的曲率模态小波分析

格式:pdf

大小:374KB

页数: 5页

带表面裂纹连续梁损伤识别的曲率模态小波分析——以带横向非对称非贯通表面裂纹的连续梁为研究对象,利用小波奇异性检测原理,提出了带表面裂纹连续梁损伤识别小波分析方法.以带表面裂纹连续梁三维有限元分析求解梁的位移模态为基础,利用中心差分法得到梁的曲...

表面工程(铝合金表面着色) 表面工程(铝合金表面着色)

表面工程(铝合金表面着色)

格式:pdf

大小:374KB

页数: 22页

表面工程(铝合金表面着色)

模态质量模态质量的计算

归一化主要是为了简化计算,常用的方式就是将每个自由度的主振型第一个元素变为1。模态质量应该是前乘振型矩阵的转置,后乘振型矩阵得到的对角质量矩阵,还有一种归一化方法就是将这个对角质量阵变成单位阵。

模态质量有意义,反映了体系中有多少质量对这阶模态振型有大的影响,每一阶是不同的。归一化振型就是计算的振型(计算位移值)除以最大的值,变成最大值为1,反映体系各处相对变形。广义质量矩阵不是模态质量。模态质量计算还涉及到振型和振型参与系数。

查看详情

热态起动简介

热态起动是指主机在停车不久的热态下或采取暖机,使其在高于环境温度状态下的起动。

中文名称
热态起动
英文名称
hot starting
定  义
主机在停车不久的热态下或采取暖机,使其在高于环境温度状态下的起动。
应用学科
船舶工程(一级学科),船舶机械(二级学科)

查看详情

房态控制

(1)信息准确

已使用电脑管理的饭店,其房态变更和转换过程是实时和自动的,屏幕显示直观,一目了然。只要能确保每次输入的指令信息准确无误,房态比较容易控制。采用传统的客房状态显示架及信号灯系统等手工控制房态的饭店,主要采用变换客房状态卡条,按时正确填写、交换、核对控制表格,加强多方信息沟通等方法来控制房态。

(2)加强房态的核对

由于总台的工作量大,而且房态时常处于变化之中,虽然很多饭店可通过电脑查询了解目前的房态,但是员工工作上仍可能出现差错,从而造成接待处的房态与客房楼层的房态不符。因此,进行房态的核对是必要的,要定时与客房部的“楼层报告”相核对,一般采取一日三次核对的方法,以免出现“漏房”、“虚房”或员工营私舞弊现象,而导致客房销售及客房服务的混乱。

总之,正确控制客房状态,主要是为了有效地销售客房。无论采用何种客房状态控制系统,都要加强总台接待、账务、预订与客房部之间的房态变更、转换控制,保持信息沟通及协作,最终提高为客人服务的效率和经济效益。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639