选择特殊符号
选择搜索类型
请输入搜索
《机械工程名词 第四分册》第一版。
由柴油机颗粒捕集器和氧化其中沉积颗粒的装置所组成的系统。
一个达标,一个不达标次氧化锌的成分有些是达不到国家标准的
在氧化还原反应中,获得电子的物质称作氧化剂与此对应,失去电子的物质称作还原剂。狭义地说,氧化剂又可以指可以使另一物质得到氧的物质,以此类推,氟化剂是可以使物质得到氟的物质,氯化剂、溴化剂等亦然。(注:...
记住四个字:降氧升还 化合价降低的是氧化剂,生成还原产物;化合价升高的还原剂,生成氧化产物。 CUO+CO=CU+CO2 铜从+2变成0,降低,氧化剂,生成对应的CU单质就是还原产物。
燃煤电厂二氧化碳捕集_利用与封存技术_许世森
1 背景 气候变 化已成 为一个 世界 性的 热点 话题 。 2007年6月举行的八国集团德国海利根达姆首脑 会议 、9月举行的澳大利亚亚太经合组织峰会 、第 62届联合国大会等一系列国际会议上,气候变化 成为国际外交舞台的主旋律 。此外,2007 年度诺贝 尔和平奖授予了致力于温室气体减排的美国前副 总统戈尔 与联合 国政府 间气候 变化专家 小组 (IPCC)。 全球气候变化所造成的影响十分明显, 这种影 响是全方位的 、多层面的,既包括正面影响, 同时也 包括负面效应 。但目前它的负面影响更受关注, 因 为这可能会对人类社会的生存与发展不利, 特别是 对一些脆弱的生态系统和社会经济的脆弱地区及 部门。 IPCC预测,21世纪全球平均气温升高的范围 可能在 1.4℃~5.8℃之间,实际上升多少, 取决于 21 世纪人类化石燃料的消耗量, 而其中最主要是电力 行业的消耗,因为其几乎占据了
氧化锌和氧化铅和氧化硼复合玻璃
ZnO–PbO–B2O3 glassesas gamma-ray shielding materials Harvinder Singh a, Kulwant Singh a, Leif Gerward b, * , Kanwarjit Singh c, Hari Singh Sahota d , Rohila Nathuram e a Department of Physics, Guru Nanak Dev University, Amritsar-143005, Punjab, India b Department of Physics, Technical University of Denmark, Building 307, DK-2800 Kgs. Lyngby, Denmark c Department of Applied Physics, Guru Nanak Dev
二氧化碳的捕集方式主要有三种:燃烧前捕集(Pre-combustion)、富氧燃烧(Oxy-fuel combustion)和燃烧后捕集(Post-combustion)。
燃烧前捕集主要运用于IGCC(整体煤气化联合循环)系统中,将煤高压富氧气化变成煤气,再经过水煤气变换后将产生CO2和氢气(H2),气体压力和CO2浓度都很高,将很容易对CO2进行捕集。剩下的H2可以被当作燃料使用。
该技术的捕集系统小,能耗低,在效率以及对污染物的控制方面有很大的潜力,因此受到广泛关注。然而,IGCC发电技术仍面临着投资成本太高,可靠性还有待提高等问题。
富氧燃烧采用传统燃煤电站的技术流程,但通过制氧技术,将空气中大比例的氮气(N2)脱除,直接采用高浓度的氧气(O2)与抽回的部分烟气(烟道气)的混合气体来替代空气,这样得到的烟气中有高浓度的CO2气体,可以直接进行处理和封存。
欧洲已有在小型电厂进行改造的富氧燃烧项目。该技术路线面临的最大难题是制氧技术的投资和能耗太高,还没找到一种廉价低耗的能动技术。
燃烧后捕集即在燃烧排放的烟气中捕集CO2,如今常用的CO2分离技术主要有化学吸收法(利用酸碱性吸收)和物理吸收法(变温或变压吸附),此外还有膜分离法技术,正处于发展阶段,但却是公认的在能耗和设备紧凑性方面具有非常大潜力的技术。
从理论上说,燃烧后捕集技术适用于任何一种火力发电厂。然而,普通烟气的压力小体积大,CO2浓度低,而且含有大量的N2,因此捕集系统庞大,耗费大量的能源。
微粒捕集器,减少柴油机污染排放的一种装置。安装在柴油发动机的排气管上,排气通过时,对微粒进行扩散、截流、惯性碰撞和重力沉降,并加以捕集,从而净化排气微粒。捕集效率主要受微粒粒径、过滤体微孔孔径、排气流速及气流温度等因素影响。捕集到一定数量的微粒后,捕集器背压上升,过滤效率下降,并会影响到柴油机的运行,故需将捕集到的微粒氧化燃烧以实现捕集器的再生。
二氧化碳封存的方法有许多种,一般说来可分为地质封存(Geological Storage)和海洋封存(Ocean Storage)两类。
地质封存一般是将超临界状态(气态及液态的混合体)的CO2注入地质结构中,这些地质结构可以是油田、气田、咸水层、无法开采的煤矿等。IPCC的研究表明,CO2性质稳定,可以在相当长的时间内被封存。若地质封存点经过谨慎的选择、设计与管理,注入其中的CO2的99%都可封存1000年以上。
把CO2注入油田或气田用以驱油或驱气可以提高采收率(使用EOR技术可提高30%~60%的石油产量);注入无法开采的煤矿可以把煤层中的煤层气驱出来,即所谓的提高煤层气采收率(Enhanced Coal Bed Methane Recovery,ECBM)。
然而,若要封存大量的CO2,最适合的地点是咸水层。咸水层一般在地下深处,富含不适合农业或饮用的咸水,这类地质结构较为常见,同时拥有巨大的封存潜力。不过与油田相比,人们对这类地质结构的认识还较为有限。
海洋封存是指将CO2通过轮船或管道运输到深海海底进行封存。然而,这种封存办法也许会对环境造成负面的影响,比如过高的CO2含量将杀死深海的生物、使海水酸化等,此外,封存在海底的二氧化碳也有可能会逃逸到大气当中(有研究发现,海底的海水流动到海面需要1600年的时间)。
总的来说,人们对海洋封存的了解还是太少。