选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

泵浦源激光器主要功能

泵浦源激光器主要功能

脉冲光,功率大,可调波长范围大。 2100433B

查看详情

泵浦源激光器造价信息

  • 市场价
  • 信息价
  • 询价

激光喷泉

  • 24V,9W
  • 13%
  • 深圳凡尊照明电器有限公司
  • 2022-12-08
查看价格

激光喷泉

  • 品种:激光喷泉;规格型号:12KW;
  • 锦泉
  • 13%
  • 河北锦泉园林景观工程股份有限公司
  • 2022-12-08
查看价格

激光投影机

  • 700W
  • 梵朗
  • 13%
  • 深圳市梵朗照明科技有限公司江门办事处
  • 2022-12-08
查看价格

激光灯FPN

  • 标准Art-net协议,多通道扩展、8端口DMX512输出,可外接MA控台,19寸机架式安装;
  • 佛山银河照明
  • 13%
  • 佛山市银河兰晶科技股份有限公司
  • 2022-12-08
查看价格

激光灯RPU

  • 1×WAN口;4×LAN口;嵌入式Linux操作系统;输出标准Art-net协议;可带载240域;专业舞台灯光控制系统
  • 大峡谷
  • 13%
  • 大峡谷照明系统(苏州)股份有限公司
  • 2022-12-08
查看价格

工程钻机

  • GJD15A
  • 深圳市2005年9月信息价
  • 建筑工程
查看价格

工程钻机

  • GJD15A
  • 深圳市2005年1月信息价
  • 建筑工程
查看价格

工程钻机

  • GJD15A
  • 深圳市2005年1月信息价
  • 建筑工程
查看价格

灰浆联合

  • 出灰量3.5m3/h
  • 台班
  • 汕头市2012年3季度信息价
  • 建筑工程
查看价格

灰浆联合

  • 出灰量3.5m3/h
  • 台班
  • 汕头市2012年2季度信息价
  • 建筑工程
查看价格

楼层过道主要功能场地指引牌

  • (1)规格:450×2850×150mm(2)1.0mm镀锌板激光切割冲压焊接烤漆,内容镂空内置LED亚克力发光
  • 1套
  • 3
  • 中高档
  • 含税费 | 含运费
  • 2022-09-21
查看价格

半导体全固态激光器

  • 1.名称:半导体全固态激光器2.激光功率:红光(638nm)/200mW
  • 2套
  • 3
  • 中档
  • 含税费 | 含运费
  • 2022-04-12
查看价格

全彩激光器

  • 参数:G:10W/520nm,R:10W/638nm,B:10W/445nm
  • 2套
  • 1
  • 一线品牌
  • 不含税费 | 不含运费
  • 2016-10-24
查看价格

全彩激光器

  • 参数:G:10W/520nm,R:10W/638nm,B:10W/445nm
  • 2.0套
  • 2
  • 国内一线品牌
  • 不含税费 | 不含运费
  • 2016-10-13
查看价格

激光器

  • MW-99(OT)-22mW
  • 4451只
  • 1
  • 鑫迈威
  • 中高档
  • 不含税费 | 含运费
  • 2015-12-17
查看价格

泵浦源激光器技术指标

输出功率大于3W,输出激光波长范围为700-900nm,脉冲光。

查看详情

泵浦源激光器主要功能常见问题

查看详情

泵浦源激光器主要功能文献

光纤激光器的泵浦源 光纤激光器的泵浦源

光纤激光器的泵浦源

格式:pdf

大小:242KB

页数: 未知

根据光纤激光器的特殊结构,提出了光纤激光器泵浦源的不同种类,并给出了选择泵浦源的标准,以及其对应的效率。

双端泵浦保偏光纤激光器 双端泵浦保偏光纤激光器

双端泵浦保偏光纤激光器

格式:pdf

大小:242KB

页数: 3页

以两台808 nm半导体激光器LD1和LD2为泵浦源,对光纤激光器双端泵浦进行了研究,获得了6.5 W的激光输出。实验分别测出了LD1和LD2半导体激光器单端泵浦和双端泵浦时的输出功率,对双端泵浦输出功率与单端泵浦功率之和进行了比较,利用双端泵浦提高了泵浦效率和输出激光功率。同时测量了输出激光的偏振度,通过计算得到双端泵浦输出激光的偏振度为0.5。

半导体泵浦固体激光器应用

半导体泵浦固体激光器的发展与半导体激光器的发展是密不可分的。1962年,第一只同质结砷化镓半导体激光器问世,1963年,美国人纽曼就首次提出了用半导体做为固体激光器的泵浦源的构想。但在早期,由于二极管的各项性能还很差,作为固体激光器的泵浦源还显得不成熟。直到1978年量子阱半导体激光器概念的提出,以及八十年代初期MOCVD 技术的使用及应变量子阱激光器的出现,使得半导体泵浦固体激光器的发展步上了一个崭新的台阶。在进入九十年代以来,大功率的半导体泵浦固体激光器及半导体泵浦固体激光器列阵技术也逐步成熟,从而,大大促进了半导体泵浦固体激光器的研究。

国内半导体泵浦固体激光器市场化水平已经达到数百瓦,实验室水平已经达到千瓦级。在应用上,大功率半导体泵浦固体激光器以材料加工为主,包括了常规的激光加工:主要是材料加工,如激光标记、激光焊接、激光切割和打孔等,结构紧凑、性能良好、工作可靠的大功率半导体泵浦固体激光打标机产品系列已经在国内得到了规模应用,在国外,千瓦级的半导体泵浦固体激光器已有产品,德国、美国汽车焊接就已经用到了千瓦级半导体泵浦固体激光焊剂机,在原理和技术方案上半导体泵浦固体激光器定标到万瓦都是可行的,主要受限于成本和市场需求的限制。二倍频半导体泵浦固体激光器在微电子行业、三倍频半导体泵浦固体激光器在激光快速成型领域都得到了广泛应用。

除材料加工外,大功率半导体泵浦固体激光器还可以用于同位素分离(二倍频、绿光)、激光核聚变、科学研究、医疗、检测、分析、通讯、投影显示以及军事国防等领域,具有极其重要的应用价值。

查看详情

泵浦源简介

泵浦源的作用是对激光工作物质进行激励,将激活粒子从基态抽运到高能级,以实现粒子数反转。根据工作物质和激光器运转条件的不同。可以采取不同的激励方式和激励装置。常见的有以下4种:光学激励(光泵浦)、气体放电激励、化学激励、核能激励。

查看详情

棒状激光器3 棒状激光器新型泵浦组件

对于棒状激光工作物质,侧面泵浦方式更易获得高功率,连续激光输出。在侧面泵浦方式中。泵浦光吸收分布是否均匀,对提高激光器的输出功率和光光转换效率有极为重要的影响。

棒状激光器侧面泵浦结构中常采用反射腔、柱透镜。为优化泵浦结构,本文提出一种新型泵浦组件。新型泵浦组件为管状(已申请国家发明专利,申请号 201110147755.0)有 n(n 为奇数)个沟槽,沟槽底部为弧形,具有一定曲率半径。在沟槽底部镀有 808nm 增透膜,在外表面两沟槽之间镀有 808nm 高反膜。

玻璃管外面开出沟槽,沟槽底部为具有一定曲率半径的弧形,与玻璃管内壁形成凹透镜结构,对泵浦光进行发散。对应沟槽底部的曲率半径不同,从而构造出发散能力不同的凹透镜结构。根据环绕激光棒空间分布半导体阵列数量的不同,所开沟槽数目可变。本实验采用的为经过快轴准直的半导体阵列。半导体阵列发出的泵浦光,快轴方向可以近似认为是平行光。根据厂家提供商导体阵列性能可知,经准直光束在快轴方向 0.6mm 范围内,包含了泵浦光全部能量。则近似认为泵浦光束为厚度为 0.6mm 的平行光。在同时考虑玻璃管材质,玻璃管厚度,冷却水层厚度,和激光棒尺寸,使用 ZEMAX 软件对泵浦光在激光棒内分布进行模拟。经 ZEMAX 模拟可以获得泵浦光经过新型玻璃管在激光棒上形成的几何分布。从而得出符合设计要求的泵浦组件参数。

经过 ZEMAX 模拟可得,对直径 7mm 棒沟槽底部曲率半径为 0.7mm;对于直径 8mm 棒,沟槽底部曲率半径为 0.65mm,管壁厚度为 3.5mm。

棒状激光器棒状激光介质热效应的理论分析

在半导体泵浦棒状激光器中,由于泵浦光能量未能全部转换成激光输出,在棒状激光工作介质中会产生较多的损耗热,其产生的主要原因有:

(1) 泵浦带与激光上能级之间的光子能量差以热的形式散逸到激光晶体基质中,造成量子亏损发热。

(2) 激光下能级与基态能级之间的能量差转换为耗散热。

(3) 因为激光跃迁过程中的荧光量子效率小于 1,所以除了产生激光外,其余能量产生热。

棒状激光器棒状工作介质温度分布

对于采用侧面泵浦方式的棒状激光器,激光棒是浸没在冷却液中。激光棒所产生的热通过棒表面流过的冷却液进行冷却。简化分析,可假设激光棒内部发热均匀,激光棒光学无限长,表面均匀冷却。这种情况下热流仅在径向,轴向上冷却液温度的端面效应和小的变化可以忽略。

棒状激光器棒状工作介质光弹效应和热应力双折射

通过前两个小节的分析可以看出,Nd:YAG 激光工作物质中的温度分布的不均匀会产生热应力,进一步会通过光弹效应使折射率发生变化,使原来的各向同性材料变为各向异性,即产生热应力双折射。

由于 Nd:YAG 单晶激光晶体是立方晶体,所以其光率体是一个圆球,但是它在热应力的作用下变为椭球。考虑常用的 Nd:YAG 单晶多用[1 1 1]方向,此时Nd:YAG 棒的圆柱轴呈[1 1 1]方向,晶体沿着此方向生长,激光也沿着此方向传播,因此分析主要考虑[1 1 1]方向的折射率变化。

棒状激光器棒状工作介质热焦距测量方法

对大功率棒状固态激光器而言,热透镜效应对激光器性能有较大影响。同时在固体激光器热稳腔的设计中,也需要知道激光棒的热透镜焦距值。所以,要获得激光棒的热透镜焦距值。通常测量热透镜焦距的方法有探测光束法、相干测量法、横模拍频法,利用光斑半径、发散角和热焦距关系式间接测量等测量方法。本文采用一种简单的测量连续大功率激光器热透镜焦距的方法。在大功率激光输出时,利用谐振腔的临界稳定条件计算有效热透镜的焦距。平行平面 谐振腔的临界稳定点是对工作介质的热透镜敏感函数。可以通过激光器的输出功率测量,记录由于有效热焦距使谐振腔通过特殊临界稳定的点,就能获得有效地热焦距值。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639