选择特殊符号
选择搜索类型
请输入搜索
编织/纺织复合材料(woven fabric/textile composite),是连续网状编织、机织、针织和缝合的纺织物增强复合材料的总称,是一种由纤维纺织预成型件浸入树脂构成的新型复合材料,包括二维编织/纺织复合材料和三维编织/纺织复合材料。编织/纺织复合材料增强体选用纤维、纱线或织物系统; 基体材料包括树脂、陶瓷与金属。
二维编织复合材料由使用经线纬线形成的二维编织物为增强体的预浸料经固化成型后得到;维编织复合材料以整体编织预成型体作为增强材料。相比于普通复合材料制件,三维编织复合材料不需要缝合和机械加工,具有较高的强度、刚度和垂直方向上较好的抗冲击性、耐烧蚀性,而且克服了传统层合板复合材料易分层、开裂敏感和损伤扩展快的缺点。三维机织物可以通过二维机织物再次织造获得,亦可直接织造。目前编织/纺织复合材料主要用于船舶工业。它在航空航天、建筑、体育民用等各个领域有着很大的应用前景。
树脂基复合材料、聚合物基复合材料、高分子基复合材料区别???
你指的是碳纤维复合材料吧,增强材料是碳纤维,主要取决于基体材料。比如炭/炭复合材料,是碳纤维增强炭(石墨)基体的复合材料,属于无机材料,主要应用于高温、摩擦方面;碳纤维增强树脂基复合材料,是有...
复合材料 是一种混合物。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维增强复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强...
复合材料的特性:复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。
木塑复合材料简介
介绍下木塑复合材料 ~ 木塑复合材料 (引用 ) 什么是木塑复合材料 木塑复合材料 (WPC) 是用木纤维或植物纤维填充、 增强的改性热塑性材料。 它集木材和塑料 的优点于一身,不仅有像天然木材那样的外观,而且克服了其不足,具有 dYCA)ZU\5J 防腐 ,防潮 ,防虫蛀 ,尺寸稳定性高 ,不开裂 ,不翘曲 等优点, 比纯塑料硬度高, 又有类似木 材的加工性,可进行切割、粘接,用钉子或螺栓固定连接,可涂漆。它经挤出或压制成型为 型材、板材或其他制品,可替代木材和塑料。 为什么要用木塑复合材料 尽管木塑复合材料比纯木要贵一些, 但是随着生产厂商找到更为高效的加工方法, 其相对的 高成本正逐渐降低。 在复合材料中使用回收塑料还可以进一步降低成本。 即使面对目前的成 本结构,许多消费者依然愿意因为这些复合材料的优点而接受相对较高的价位。 ★ 1、对环境友好: 使用再生材料(木粉与塑料)不
纺织复合材料论文
关键词: 生物医用复合材料 0 引 言 生物医用复合材料 (biomedical composite materials) 是由两种或两种以上的不同材料复合 而成的生物医用材料, 它主要用于人体组织的修复、 替换和人工器官的制造[ 1]。长期临床 应用发现, 传统医用金属材料和高分子材料不具生物活性, 与组织不易牢固结合, 在生理环 境中或植入体内后受生理环境的影响,导致金属离子或单体释放,造成对机体的不良影响。 而生物陶瓷材料虽然具有良好的化学稳定性和相容性、 高的强度和耐磨、 耐蚀性, 但材料的 抗弯强度低、 脆性大, 在生理环境中的疲劳与破坏强度不高, 在没有补强措施的条件下, 它 只能应用于不承受负荷或仅承受纯压应力负荷的情况。 因此,单一材料不能很好地满足临床 应用的要求。利用不同性质的材料复合而成的生物医用复合材料, 不仅兼具组分材料的性质, 而且可以得到单组分材料不具备的新性
编织填料主要采用的编织形式有:发辫编织、套层编织、穿心编制、夹心编制等。盘根的编制形式和特点如下:
1、发辫编织
发辫编织是用八个锭子在二轨道上运行编织,在四角和中间没有绒芯,编织的产品断面为方形,其特点是盘根松散,但对轴振动和偏心用一定的补偿作用,只用于小断面填料,但断面尺寸大将会出现填料外表花纹粗糙,结构松弛,致密性差的缺点
2、套层编织
套层编织是用8、12、16、24、36、48、60等个锭子在二轨道上编织,根据盘根规格决定套层,一般编织1~4层,中间没有绒芯,套层填料致密性好,密封性强,但由于是套层,层间没有纤维相连容易脱层,故多用于静密封或低速设备。
3、夹心编织
夹心编制是以橡胶或金属为芯子,纤维在外,一层套一层的编织,层数按需要而定,类似于套层编织,夹心编织致密性较好,强度高,弯曲性能好,密封性好,但与套层结构一样,表面层磨损后就容易脱落,一般用于泵、阀,极少用于往复设备。
4、穿心编制
穿心编织是用8、12、16、24、36、48、60等个锭子在三或四个轨道上编织而成,断面呈方形,表面平整,弹性和耐磨性好,强度高,致密性好,与轴接触面比发辫式大且均匀,纤维间空隙小,所以密封性好,表面层磨损后整个填料不会松散,使用寿命长,是一种比较先进的编织结构。
各种编织形式对比图:
本项目主要研究了三维碳/环氧编织复合材料的低速冲击和冲击后压缩性能(CAI)。对不同编织角度和编织结构的试件在不同的冲击能量水平进行低速冲击测试。CAI测试分析不同结构的冲击后剩余力学性能,同时采用声发射技术实时监测其测试过程以便进一步分析其损伤机理。 实验数据表明,三维编织复合材料的低速冲击力学性能及损伤模式与编织角度和编织结构相关。编织角度决定纤维束排列的紧密程度,编织角度越大纤维束排列的越紧密,其抗冲击性能越强;编织结构决定纤维束的走向,垂直于冲击方向的纤维束有较好的缓冲吸能作用,能限制冲击损伤向非冲击面的扩展。并以结构最复杂的三维六向编织复合材料为例,将有限元技术与细观力学理论相结合,根据复合材料的细观结构,建立起具有代表性的有限元单胞模型,系统地分析其刚度和强度随编织参数的变化规律。在此基础上,用Chang-Chang失效准则作为判据对材料的低速冲击损伤过程进行模拟,数值结果与实验结果吻合较好。 CAI性能和损伤机理主要受编织纤维束的轴向支撑影响。编织角越小,编织纱沿压缩方向承载能力越强,其CAI性能也就越高,在压缩过程中,纤维受力比较均匀,达到极限载荷时纤维发生脆性断裂,且断裂面平齐。随着编织角增加,编织纱沿压缩方向承载能力减弱,其CAI性能也就越低,纤维不容易沿编织纹理方向发生破坏,纤维束界面基体开裂导致剪切破坏而使材料失效。编织结构的不同对编织复合材料的压缩性能及破坏模型也有所影响:三维五向编织复合材料的轴向纱线直接承受压缩载荷,因此其相应的CAI性能要高些;而三维六向编织复合材料虽然有轴向纱线承受载荷,但由于横向纱线(和载荷方向垂直,不承受载荷)的存在,在相近纤维体积含量的情况下,降低了轴向纱线和编织纱线的含量,因此其CAI性能最低,且横向纱不承受压缩载荷,限制了纤维束沿纤维束边界的剪切破坏,随着载荷的增加,在冲击损伤区域的纤维束界面基体开裂比较集中,纤维束失去基体的支撑,在压缩载荷作用下极易发生屈曲,因此角度较大的三维六向编织复合材料呈现局部弯曲。通过声发射信号的能量、峰值频率和幅度等特征参数,采用多参数历程图分析法,并结合载荷-位移曲线,把CAI损伤过程分为不同的损伤阶段,讨论了三维编织复合材料的CAI损伤演化规律,结合波形信号的频谱特性揭示材料的损伤机理。
三维纺织压电复合材料力学性能的细观模拟及微结构拓扑优化设计是当前颇具有挑战性的研究课题。本项目拟在实验分析基础上对三维编织压电复合材料的力学行为进行细观尺茺的理论和数值研究,并以刚度、强度等宏观性能为目标函数,以相关微结构参数为设计变量,对材料进行微结构拓扑优化设计的研究。 2100433B