选择特殊符号
选择搜索类型
请输入搜索
磁导率是一个物理名词,表示磁介质磁性的物理量。
(1)初始磁导率μi:是指基本磁化曲线当H→0时的磁导率
(2)最大磁导率μm:在基本磁化曲线初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一磁场强度下(Hm),磁密度达到最大值(Bm) ,即(3)饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo。
(4)差分(增量)磁导率μΔ∶μΔ=△B/△H。ΔB及△H是在(B1,H1)点所取的增量如图1和图2所示。
(5)微分磁导率,μd∶μd=dB /dH,在(B1,H1)点取微分,可得μd。
可知:μ1=B1/H1,μ△=△B /△H,μd=dB1/dH1,三者虽是在同一点上的磁导率,但在数值上是不相等的。
非磁性材料(如铝、木材、玻璃、自由空间)B与H之比为一个常数,用μ。来表示非磁性材料的的磁导率,即μ。=1(在CGS单位制中)或 μ。=4πX10o-7(在RMKS单位制中)。
在众多的材料中,如果自由空间(真空)的μo=1,那△么比1略大的材料称为顺磁性材料(如白金、空气等);比1略小的材料,称为反磁性 材料(如银、铜、水等)。本章介绍的磁性元件μ1是大有用处的。只有在需要磁屏蔽时,才会用铜等反磁性材料做成屏蔽罩使磁元件的磁 不会辐射到空间中去。
下面给出几个常用的参数式:
(1)有效磁导率μro。在用电感L形成闭合磁路中(漏磁可以忽略),磁心的有效磁导率为:
式中 L--绕组的自感量(mH);
W--绕组匝数;
磁心常数,是磁路长度Lm与磁心截面积Ae的比值(mm).
(2)饱和磁感应强度Bs。随着磁心中磁场强度H的增加,磁感应强度出现饱和时的B值,称为饱和磁感应强度B。
(3)剩余磁感应强度Br。磁心从磁饱和状态去除磁场后,剩余的磁感应强度(或称残留磁通密度)。
(4)矫顽力Hco。磁心从饱和状态去除磁场后,继续反向磁化,直至磁感应强度减小到零,此时的磁场强度称为矫顽力(或保磁力)。
(5)温度系数aμ°温度系数为温度在T1~T2范围内变化时,每变化1℃相应磁导率的相对变化量,即
式中 μr1--温度为T1时的磁导率;
μr2--温度为T2时的磁导率。
值得注意的是:除了磁导率μ与温度有关系之外,饱和磁感应强度Bs、剩余磁感应强度Br、矫顽力Hc,以及磁心比损耗Pcv(单位重量损耗W/kg)等磁参数,也都与磁心的工作温度有关。
说起磁导率μ的测量,似乎非常简单,在材料样环上随便绕几匝线圈,测其电感,找个公式一算就完了。其实不然,对同一只样环,用不同仪器,绕不同匝数,加不同电压或者用不同频率都可能测出差别甚远的磁导率来。造成测试结果差别极大的原因,并非每个测试人员都有精力搞得清楚。本文主要讨论测试匝数及计算公式不同对磁导率测量的影响。
2.1 计算公式的影响
大家知道,测量磁导率μ的方法一般是在样环上绕N匝线圈测其电感L,因为可推得L的表达式为:
L=μ0 μN^2A/l (1)
所以,由(1)式导出磁导率 的计算公式为:
μ=Ll/μ0N^2A (2)
式中:l为磁心的磁路长度,A为磁心的横截面积。
对于具有矩形截面的环型磁芯,如果把它的平均磁路长度l=π(D+d)/2就当作磁心的磁路长度l,把截面积A=h(D-d)/2,μ0=4π×10-7都代入(2)式得:
μ=L(D+d)*10/4Nh(D-d) (3)
式中,D为环的外直径,d为内径,h为环的高度,如图2所示。把环的内径d=D-2a代入(3)式得:
μ=L(D-a)*10/4Nha (4)
式中:a为环的壁厚。
对于内径较小的环型磁心,内径不如壁厚容易测量,所以用(4)式比较方便。(4)式与(3)式是等效的,它们的由来是把环的平均磁路长度当成了磁心的磁路长度。用它们计算出来的磁导率称为材料的环磁导率。有人说用环型样品测量出来的磁导率就叫环磁导率,这种说法是不正确的。实际上,环磁导率比材料的真实磁导率要偏高一些,且样环的壁越厚,误差越大。
对于样环来说,在相同安匝数磁动势激励下,磁化场在径向方向上是不均匀的。越靠近环壁的外侧面,磁场就越弱。在样环各处磁导率μ不变的条件下,越靠近环壁的外侧,环的磁通密度B就越低。为了消除这种不均匀磁化对测量的影响,我们把样环看成是由无穷多个半径为r,壁厚无限薄为dr的薄壁环组成。根据(1)式,可写出每个薄壁环产生的电感dL为:
(5)
由(5)式对r从内半径r1到外半径r2积分,既得到整个样环产生的电感L:
(6)
由(6)式导出计算磁导率的精确公式为:
(7)
为了便于实际应用,可把(7)式化为;
(8)
上式中:D为样环外径,d为内径。把自然对数换为常用对数,(8)式被化为:
(9)
如果样环是由同一种材料组成,则用(7)、(8)或(9)式计算出来的磁导率就是其材料的真正磁导率μ。它比其环磁导率略低一些。
2.2 测试线圈匝数N的影响
由于电感L与匝数N2成正比,按理说用(9)式计算出来的磁导率μ不应该再与匝数N有关系,但实际上却经常有关系。
关于材料磁导率的测量,一般使用的测试频率都不高,经常在1kHz或10kHz的频率测试。测试信号一般都是使用正弦信号,因为频率不高,样环绕组线圈阻抗的电阻部分可忽略不计,把绕组线圈看作一个纯电感L接在测量仪器上。测试等效电路如图所示,仪器信号源产生的电压有效值为U,Ri为信号源的输出阻抗。由图3很容易写出磁化电流的表达式:
(10)
上式中,ω为仪器信号源的角频率,L为样环绕组线圈的电感。
L=μ0μN2Ae /le (11)
(11)中,Ae为磁心的有效截面积,le为磁心的有效磁路长度。如果把环型磁心的Ae和le代入,(11)式就会变为与(6)式的结果相同。
测试电流产生的有效磁场强度峰值Hm为:
(12)
把(10)式和(11)式都代入(12)式得到:
(13)
由(13)式可知,当(ωμ0μAe)2N4远小于le2Ri2时,(13)式可近似为:
(14)
上式告诉我们,测试线圈匝数很少时,测试磁场强度与匝数成正比。随着匝数的增多,当达到(ωμ0μAe)2N4远大于le2Ri2时,(13)式可近似为:
(15)
由(15)式可知,测试线圈匝数太多时,测试磁场强度又会与匝数成反比。
从以上分析得知,测量磁导率时,样环中的磁化场强度与测试线圈的匝数有关,当匝数为某一定值时磁场强度就会达到最强值。而材料的磁导率又与磁化场强密切相关,所以导致磁导率的测量与测试线圈匝数有关。结合图具体讨论匝数对磁导率测试的影响。
2.2.1测试电压U较低的情况
如前所述,对于高档仪器,如Agilent 4284A精密LCR 测试仪,它的测试电压可以调得极低,以至于测试磁场强度随匝数的变化达到最强时,仍然没有超出磁导率的起始区。这时测得的总是材料的起始磁导率μi,它与测试线圈匝数N无关。用同一台仪器,如果把测试电压调得比较高,不能再保证不同匝数测得的磁导率都是起始磁导率,这时所测得的磁导率又会与测试线圈匝数有关了。
2.2.2 测试电压U不能调的情况
绝大多数测量电感的简便仪器,其测试电压和频率都不能灵活调节。如 2810 LCR电桥,其测试频率为100Hz或1kHz,测试电压小于0.3V。
磁场的能量密度=B^2/2μ
在国际单位制(SI)中,相对磁导率μr是无量纲的纯数,磁导率μ的单位是亨利/米(H/m)。
常用的真空磁导率
坡莫合金相对磁导率μr=μ/μ02*104~2*105
从几到3万,范围很宽。六角晶系铁氧体:几到几十。NiZn(MgZn)铁氧体:几十到2000,目前最高4000,磁导率上千的很少见。MnZn铁氧体:几百到30000,5000以上算高磁导率。铁氧体饱合磁...
H型钢、铝合金和玻璃钢的相对磁导率分别是200~400、1.000022、7000~10000; 磁导率 英文名称:magnetic permeability 表征磁介质磁性的物理量。表示在空间或在...
磁导率的测量是间接测量,测出磁心上绕组线圈的电感量,再用公式计算出磁芯材料的磁导率。所以,磁导率的测试仪器就是电感测试仪。在此强调指出,有些简易的电感测试仪器,测试频率不能调,而且测试电压也不能调。例如某些电桥,测试频率为100Hz或1kHz,测试电压为0.3V,给出的这个0.3V并不是电感线圈两端的电压,而是信号发生器产生的电压。至于被测线圈两端的电压是个未知数。如果用高档的仪器测量电感,例如 Agilent 4284A 精密LCR测试仪,不但测试频率可调,而且被测电感线圈两端的电压及磁化电流都是可调的。了解测试仪器的这些功能,对磁导率的正确测量是大有帮助的。
Fe81Ga19磁致伸缩合金的动态磁导率研究
研究了Fe81Ga19磁致伸缩合金在不同的偏置磁场和频率下的动态磁导率。在低频或准静态下,该合金的磁导率能够达到160以上,但随频率增加,磁导率逐渐下降,频率大于6 KHz时,磁导率的下降减缓,并逐渐趋于稳定。当施加平行偏置磁场时,磁导率明显降低,而施加垂直偏置磁场时,与零偏置磁场相比,磁导率除较低频率段有少量的下降外,基本保持不变。
核电产品奥氏体不锈钢材料磁导率控制工艺
核电产品中的奥氏体不锈钢材料对磁导率有严格要求(磁导率μ≤1.3),而按国标采购是因化学成份的差异会导致每批次材料磁导率不同,同时在产品生产、加工、转运、焊接过程中也会造成磁导率变化,满足不了产品使用要求。通过对核电产品常用奥氏体型不锈钢材料结构和组织分析,从微观原理、组织状态、化学成分对磁导率的影响等多方面进行分析,其中化学成分对磁导率的影响最大,因此通过化学成分的调节,使材料获得稳定奥氏体组织和采用稳定有效的工艺措施是保证产品磁导率合格的关键。
低频磁场屏蔽
低频磁场是较难屏蔽的。利用高磁导率材料吸收损耗大的特点来屏蔽低频磁场是一个常用的磁场屏蔽法。使用高磁导率材料应注意以下几点:
(1)磁导率随着频率的升高而降低,材料手册上给出的数据通常是直流时的磁导率。直流时的磁导率越高,其随频率升高降低得越快。
(2)高磁导率材料在经过加工或受到冲击、碰撞后会发生磁导率降低的现象,因此必须在加工后进行适当的热处理。
(3)磁导率与外加磁场的强度有关。当外加磁场适中时,磁导率最高;当外加磁场过强时,屏蔽材料会发生饱和,磁饱和时的场强与材料的种类和厚度有关。
当要屏蔽的磁场很强时,如果使用高磁导率材料,会因磁饱和而丧失屏蔽效能;而使用低磁导率材料,由于吸收损耗不够,将不能满足要求。遇到这种情况,可采用双层屏蔽,如图2所示。
零磁通电流传感器
最有效的电流传感器是采用高磁导率材料制造的零磁通电流传感器,如坡莫合金、非晶态合金等。
一般传感器采用普通互感器原理,传感器工作在磁滞回线上很短的一个区域,这个区域可以近似为一条斜线,它们极易受材料内应力以及温度的影响,造成磁滞回线变化,测试数据极不稳定。零磁通传感器是由1个
图3中原边线圈流过电流
此传感器的关键在于整个系统工作在磁通为零的这个工作点,而不像传统传感器工作在一条磁滞回线上,所以避免了传统传感器的特性随温度漂移、非线性不好等缺点。即使电流在较大范围内变化时,传感器也可正常工作。
在真空中,磁场常数是磁感应强度和磁场强度的比率:
真空磁导率
无限长载流直导线外距离导线r处:
所谓高磁导率材料,指的是磁导率大约在
这类材料要求磁导率高,饱和磁感应强度大,电阻高,损耗低,稳定性好等。其中尤其是高磁导率和低损耗最重要。生产上为了获得高磁导率的磁性材料,一方面要提高材料的
起始磁导率