选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 装饰百科

超精密液体静压导轨系统综合动态设计理论与方法研究

《超精密液体静压导轨系统综合动态设计理论与方法研究》是依托中南大学,由胡均平担任项目负责人的面上项目。

超精密液体静压导轨系统综合动态设计理论与方法研究基本信息

超精密液体静压导轨系统综合动态设计理论与方法研究结题摘要

摘要:精密与超精密加工技术是制造业水平的重要标志,是先进制造技术的基础和关键。而超精密液体静压导轨是超精密加工技术广泛应用的共用关键基础功能模块。但目前对超精密液体静压导轨多场耦合作用机理和承载特性认识不足,严重制约了超精密加工机床的设计和应用精度。本申请课题在已有工作的基础上开展了以下研究工作:(1)超精密液体静压导轨系统的机、液、热多物理场复杂非线性耦合机理研究。在机、液、热多物理场耦合模型的基础上,对导轨机械结构进行静力学分析、模态分析及热特性分析,并对导轨油膜进行流场仿真分析。(2)超精密液体静压导轨系统综合性能指标分析及评价体系研究。分析了节流器结构、薄膜节流器特性参数对静压导轨承载特性以及油膜刚度的影响规律,研究了液体静压导轨综合性能指标评价体系。(3)超精密液体静压导轨多物理场复杂非线性耦合系统综合性能动态优化设计及控制理论研究。对液体静压导轨性能进行了正交优化研究,并对其油膜波动进行了预见控制及最优控制理论研究。(4)超精密液体静压导轨系统的综合性能动态优化设计平台及实验研究。在理论分析的基础上,开发了液体静压导轨的优化设计平台,并对原系统进行了改造,搭建了液体静压导轨的测试实验平台,并进行了实验研究。通过理论分析、计算机模拟、实验测试相结合的方法揭示多场耦合作用下超精密液体静压导轨承载机理,建立导轨承载特性评价体系,提出高效可靠的超精密液体静压导轨综合动态优化设计方法及控制理论并开发出相应的设计平台。

查看详情

超精密液体静压导轨系统综合动态设计理论与方法研究造价信息

  • 市场价
  • 信息价
  • 询价

不锈钢导轨

  • 1.5mm厚、复合型
  • m
  • 中霍
  • 13%
  • 广东霍曼实业有限公司
  • 2022-12-07
查看价格

防烟导轨

  • GFJ
  • m
  • 龙盾
  • 13%
  • 浙江龙盾门业有限公司(湖州市厂商期刊)
  • 2022-12-07
查看价格

导轨

  • 喷塑侧导轨 无机防火卷帘门
  • m
  • LINGYING
  • 13%
  • 北京凌鹰金属门窗厂
  • 2022-12-07
查看价格

导轨

  • 普通侧导轨 无机防火卷帘门
  • m
  • LINGYING
  • 13%
  • 北京凌鹰金属门窗厂
  • 2022-12-07
查看价格

导轨

  • 10.1-12m 无机防火卷帘门
  • m
  • LINGYING
  • 13%
  • 北京凌鹰金属门窗厂
  • 2022-12-07
查看价格

防坠导轨

  • m
  • 广东2022年3季度信息价
  • 电网工程
查看价格

抽屉导轨

  • 14寸
  • 佛山市2022年3季度信息价
  • 建筑工程
查看价格

抽屉导轨

  • 14寸
  • 湛江市2022年3季度信息价
  • 建筑工程
查看价格

抽屉导轨

  • 18寸
  • 佛山市2022年9月信息价
  • 建筑工程
查看价格

抽屉导轨

  • 18寸
  • 湛江市2022年2季度信息价
  • 建筑工程
查看价格

液体速凝剂

  • 5液体
  • 5974kg
  • 2
  • 普通
  • 含税费 | 含运费
  • 2015-04-07
查看价格

液体安全检查系统

  • 见附件液态安全检查系统技术参数
  • 1台
  • 1
  • 中档
  • 含税费 | 含运费
  • 2022-07-08
查看价格

流程设计套件

  • 拼插式结构,易于组装和拆卸,可重复使用.由各种颗粒、轴承、轴、轮、齿轮、连接件特殊件组成,用ABS材料制作.能搭建火中逃生、盖房子、积木分拣流程的设计优化、积木分拣流程的优化等活动项目.
  • 28套
  • 2
  • 中高档
  • 含税费 | 含运费
  • 2020-04-10
查看价格

mmA液体双组份

  • mmA液体双组份
  • 20958.57kg
  • 3
  • 中档
  • 不含税费 | 含运费
  • 2021-08-24
查看价格

导轨

  • 导轨系统
  • 50m
  • 3
  • 飞利浦、松下、索恩
  • 中档
  • 不含税费 | 不含运费
  • 2022-07-26
查看价格

超精密液体静压导轨系统综合动态设计理论与方法研究项目摘要

精密与超精密加工技术是制造业水平的重要标志,是先进制造技术的基础和关键。而超精密液体静压导轨是超精密加工技术广泛应用的共用关键基础功能模块。由于目前对超精密液体静压导轨多场耦合作用机理和承载特性认识不足,严重制约超精密加工机床的设计和应用精度,为此本申请课题拟在已有工作基础上开展以下研究工作:超精密液体静压导轨系统的机、液、热多物理场复杂非线性耦合机理研究;超精密液体静压导轨系统综合性能指标分析及评价体系研究;超精密液体静压导轨多物理场复杂非线性耦合系统综合性能动态优化设计理论研究;超精密液体静压导轨系统的综合性能动态优化设计软件研究。通过理论分析、计算机模拟、实验测试相结合的方法揭示多场耦合作用下超精密液体静压导轨承载机理,建立导轨承载特性评价体系,提出一种高效可靠的超精密液体静压导轨综合动态优化设计方法并开发出相应的设计平台。

查看详情

超精密液体静压导轨系统综合动态设计理论与方法研究常见问题

查看详情

超精密液体静压导轨系统综合动态设计理论与方法研究文献

城市设计理论与方法 城市设计理论与方法

城市设计理论与方法

格式:pdf

大小:13KB

页数: 4页

【摘要】结合哈尔滨市城市步行街区建设实践, 从分析步行街区的空间与功 能构成人手,重点研究城市步行街区的功能构成要素及功能构成模式; 分析城市 步行街区空间涵义、 特征和步行空间界面构成要素。 通过研究城市步行街区的运 行机制及功能与空间的构成,为塑造城市步行街区空间环境提供理论基础。 【关键词】市步行街区;空间;功能;构成 经过几十年的发展, 国外对步行街的研究, 从规划设计到具体实践, 都积累 了丰富的经验,他们成功地运用规划学、 建筑学、环境艺术学及环境心理学、 人体工程学等诸学科的最新成果, 对城市步行街的开发模式、 具体工程量化、 环 境营造都有了深入的研究, 取得了丰硕的成果。 而我国由于起步晚, 对于从理论 上指导方兴未艾的步行街区建设,显然缺乏足够的准备。 1城市步行街区的功能构成 1.1功能构成要素 1.1.1商业功能 因为步行街区有大量的人群聚集,必然需要一定的功能 支

城市设计理论与方法l论文 城市设计理论与方法l论文

城市设计理论与方法l论文

格式:pdf

大小:13KB

页数: 5页

《城市设计理论与方法》——课程作业 《西安古城墙保护及其对西安交通的影响 》 1 西安古城墙保护及其对西安交通的影响 【专业名称 】城市设计理论与方法 【学号】 0602240334 【指导教师 】雷振东 【学生姓名 】徐健生 【摘 要】 本文首先对西安古城墙做了简要的介绍,进而说明了城墙保护的重要性,同时分析了古城墙保护与城市交通之间 的矛盾,并对如何解决矛盾提出了个人见解。 【关键词】 城墙、交通、矛盾、扬长避短 【 Abstract 】 This paper introduces the city wall of xi ’an 、 and then explained the importance of the protection of that.By the way ,this essay analysised the ancient city wall protecti

超精密加工超精密发展

超精密加工的发展经历了如下三个阶段。

(1)20世纪50年代至80年代为技术开创期。20世纪50年代末,出于航天、国防等尖端技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石刀具超精密切削--单点金刚石切削(Single point diamond tuming,SPDT)技术,又称为"微英寸技术",用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。从1966年起,美国的unionCarbide公司、荷兰Philips公司和美国LawrenceLivemoreLaboratories陆续推出

各自的超精密金刚石车床,但其应用限于少数大公司与研究单位的试验研究,并以国防用途或科学研究用途的产品加工为主。这一时期,金刚石车床主要用于铜、铝等软金属的加工,也可以加工形状较复杂的工件,但只限于轴对称形状的工件例如非球面镜等。

(2)20世纪80年代至90年代为民间工业应用初期。在20世纪80年代,美国政府推动数家民间公司Moore Special Tool和Pneumo Precision公司开始超精密加工设备的商品化,而日本数家公司如Toshiba和Hitachi与欧洲的Cmfield大学等也陆续推出产品,这些设备开始面向一般民间工业光学组件商品的制造。但此时的超精密加工设备依然高贵而稀少,主要以专用机的形式订作。在这一时期,除了加工软质金属的金刚石车床外,可加工硬质金属和硬脆性材料的超精密金刚石磨削也被开发出来。该技术特点是使用高刚性机构,以极小切深对脆性材料进行延性研磨,可使硬质金属和脆性材料获得纳米级表面粗糙度。当然,其加工效率和机构的复杂性无法和金刚石车床相比。20世纪80年代后期,美国通过能源部"激光核聚变项目"和陆、海、空三军"先进制造技术开发计划"对超精密金刚石切削机床的开发研究,投入了巨额资金和大量人力,实现了大型零件的微英寸超精密加工。美国LLNL国家实验室研制出的大型光学金刚石车床(Large optics diamond turning machine,LODTM)成为超精密加工史上的经典之作。这是一台最大加工直径为1.625m的立式车床,定位精度可达28nm,借助在线误差补偿能力,可实现长度超过1m、而直线度误差只有士25nm的加工。

(3)20世纪90年代至今为民间工业应用成熟期。从1990年起,由于汽车、能源、医疗器材、信息、光电和通信等产业的蓬勃发展,超精密加工机的需求急剧增加,在工业界的应用包括非球面光学镜片、Fresnel镜片、超精密模具、磁盘驱动器磁头、磁盘基板加工、半导体晶片切割等。在这一时期,超精密加工设备的相关技术,例如控制器、激光干涉仪、空气轴承精密主轴、空气轴承导轨、油压轴承导轨、摩擦驱动进给轴也逐渐成熟,超精密加工设备变为工业界常见的生产机器设备,许多公司,甚至是小公司也纷纷推出量产型设备。此外,设备精度也逐渐接近纳米级水平,加工行程变得更大,加工应用也逐渐增广,除了金刚石车床和超精密研磨外,超精密五轴铣削和飞切技术也被开发出来,并且可以加工非轴对称非球面的光学镜片。

世界上的超精密加工强国以欧美和日本为先,但两者的研究重点并不一样。欧美出于对能源或空间开发的重视,特别是美国,几十年来不断投入巨额经费,对大型紫外线、x射线探测望远镜的大口径反射镜的加工进行研究。如美国太空署(NASA)推动的太空开发计划,以制作1m以上反射镜为目标,目的是探测x射线等短波(O.1~30nm)。由于X射线能量密度高,必须使反射镜表面粗糙度达到埃级来提高反射率。此类反射镜的材料为质量轻且热传导性良好的碳化硅,但碳化硅硬度很高,须使用超精密研磨加工等方法。日本对超精密加工技术的研究相对美、英来说起步较晚,却是当今世界上超精密加工技术发展最快的国家。日本超精密加工的应用对象大部分是民用产品,包括办公自动化设备、视像设备、精密测量仪器、医疗器械和人造器官等。日本在声、光、图像、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,具有优势,甚至超过了美国。日本超精密加

工最初从铝、铜轮毂的金刚石切削开始,而后集中于计算机硬盘磁片的大批量生产,随后是用于激光打印机等设备的多面镜的快速金刚石切削,之后是非球面透镜等光学元件的超精密切削。l982年上市的EastnlanKodak数码相机使用的一枚非球面透镜引起了日本产业界的广泛关注,因为1枚非球面透镜至少可替代3枚球面透镜,光学成像系统因而小型化、轻质化,可广泛应用于照相机、录像机、工业电视、机器人视觉、CD、VCD、DvD、投影仪等光电产品。因而,非球面透镜的精密成形加工成为日本光学产业界的研究热点。

尽管随时代的变化,超精密加工技术不断更新,加工精度不断提高,各国之间的研究侧重点有所不同,但促进超精密加工发展的因素在本质上是相同的。这些因素可归结如下。

(1)对产品高质量的追求。为使磁片存储密度更高或镜片光学性能更好,就必须获得粗糙度更低的表面。为使电子元件的功能正常发挥,就要求加工后的表面不能残留加工变质层。按美国微电子技术协会(SIA)提出的技术要求,下一代计算机硬盘的磁头要求表面粗糙度Ra≤0.2nm,磁盘要求表面划痕深度h≤lnm,表面粗糙度Ra≤0.1nmp。1983年TANIGUCHI对各时期的加工精度进行了总结并对其发展趋势进行了预测,以此为基础,BYRNE描绘了20世纪40年代后加工精度的发展。

(2)对产品小型化的追求。伴随着加工精度提高的是工程零部件尺寸的减小。从1989~2001年,从6.2kg降低到1.8kg。电子电路高集成化要求降低硅晶片表面粗糙度、提高电路曝光用镜片的精度、半导体制造设备的运动精度。零部件的小型化意味着表面积与体积的比值不断增加,工件的表面质量及其完整性越来越重要。

(3)对产品高可靠性的追求。对轴承等一边承受载荷一边做相对运动的零件,降低表面粗糙度可改善零件的耐磨损性,提高其工作稳定性、延长使用寿命。高速高精密轴承中使用的Si3N4。陶瓷球的表面粗糙度要求达到数纳米。加工变质层的化学性质活泼,易受腐蚀,所以从提高零件耐腐蚀能力的角度出发,要求加工产生的变质层尽量小。

(4)对产品高性能的追求。机构运动精度的提高,有利于减缓力学性能的波动、降低振动和噪声。对内燃机等要求高密封性的机械,良好的表面粗糙度可减少泄露而降低损失。二战后,航空航天工业要求部分零件在高温环境下工作,因而采用钛合金、陶瓷等难加工材料,为超精密加工提出了新的课题。

查看详情

精密及超精密加工超精密加工

超精密加工是指亚微米级(尺寸误差为0.3~0.03µm,表面粗糙度为Ra0.03~0.005µm)和纳米级(精度误差为0.03µm,表面粗糙度小于Ra0.005µm)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。超精密加工主要包括三个领域:超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1µm。如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。

a.超精密切削

超精密切削以SPDT技术开始,该技术以空气轴承主轴、气动滑板、高刚性、高精度工具、反馈控制和环境温度控制为支撑,可获得纳米级表面粗糙度。多采用金刚石刀具铣削,广泛用于铜的平面和非球面光学元件、有机玻璃、塑料制品(如照相机的塑料镜片、隐形眼镜镜片等)、陶瓷及复合材料的加工等。未来的发展趋势是利用镀膜技术来改善金刚石刀具在加工硬化钢材时的磨耗。此外,MEMS组件等微小零件的加工需要微小刀具,目前微小刀具的尺寸约可达50~100μm,但如果加工几何特征在亚微米甚至纳米级,刀具直径必须再缩小,其发展趋势是利用纳米材料如纳米碳管来制作超小刀径的车刀或铣刀。

b.超精密磨削

超精密磨削是在一般精密磨削基础上发展起来的一种镜面磨削方法,其关键技术是金刚石砂轮的修整,使磨粒具有微刃性和等高性。超精密磨削的加工对象主要是脆硬的金属材料、半导体材料、陶瓷、玻璃等。磨削后,被加工表面留下大量极微细的磨削痕迹,残留高度极小,加上微刃的滑挤、摩擦、抛光作用,可获得高精度和低表面粗糙度的加工表面,当前超精密磨削能加工出圆度0.01μm、尺寸精度0.1μm和表面粗糙度为Ra0.005μm的圆柱形零件。

c.超精密研磨

超精密研磨包括机械研磨、化学机械研磨、浮动研磨、弹性发射加工以及磁力研磨等加工方法。超精密研磨的关键条件是几乎无振动的研磨运动、精密的温度控制、洁净的环境以及细小而均匀的研磨剂。超精密研磨加工出的球面度达0.025μm,表面粗糙度Ra达0.003μm。

d.超精密特种加工

超精密特种加工主要包括激光束加工、电子束加工、离子束加工、微细电火花加工、精细电解加工及电解研磨、超声电解加工、超声电解研磨、超声电火花等复合加工。激光、电子束加工可实现打孔、精密切割、成形切割、刻蚀、光刻曝光、加工激光防伪标志;离子束加工可实现原子、分子级的切削加工;利用微细放电加工可以实现极微细的金属材料的去除,可加工微细轴、孔、窄缝平面及曲面;精细电解加工可实现纳米级精度,且表面不会产生加工应力,常用于镜面抛光、镜面减薄以及一些需要无应力加工的场合。

超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。美国50年代未发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(SinglePointDia-mondTurning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。北京机床研究所是国内进行超精密加工技术研究的主要单位之一,研制出了多种不同类型的超精密机床、部件和相关的高精度测试仪器等,如精度达0.025μm的精密轴承、JCS—027超精密车床、JCS—031超精密铣床、JCS—035超精密车床、超精密车床数控系统、复印机感光鼓加工机床、红外大功率激光反射镜、超精密振动-位移测微仪等,达到了国内领先、国际先进水平。哈尔滨工业大学在金刚石超精密切削、金刚石刀具晶体定向和刃磨、金刚石微粉砂轮电解在线修整技术等方面进行了卓有成效的研究。清华大学在集成电路超精密加工设备、磁盘加工及检测设备、微位移工作台、超精密砂带磨削和研抛、金刚石微粉砂轮超精密磨削、非圆截面超精密切削等方面进行了深入研究,并有相应产品问世。我国超精密加工技术与美日相比,还有不小差距,特别是在大型光学和非金属材料的超精加工方面,在超精加工的效率和自动化技术方面差距尤为明显。

查看详情

超精密加工简介

20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的加工技术。超精密加工的精度比传统的精密加工提高了一个以上的数量级。到20世纪80年代,加工尺寸精度可达10纳米(1×10-8米),表面粗糙度达1纳米。超精密加工对工件材质、加工设备、工具、测量和环境等条件都有特殊的要求,需要综合应用精密机械、精密测量、精密伺服系统、计算机控制以及其他先进技术。工件材质必须极为细致均匀,并经适当处理以消除内部残余应力,保证高度的尺寸稳定性,防止加工后发生变形。加工设备要有极高的运动精度,导轨直线性和主轴回转精度要达到0.1微米级,微量进给和定位精度要达到0.01微米级。对环境条件要求严格,须保持恒温、恒湿和空气洁净,并采取有效的防振措施。加工系统的系统误差和随机误差都应控制在 0.1微米级或更小。这些条件是靠综合应用精密机械、精密测量、精密伺服系统和计算机控制等各种先进技术获得的。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639