选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 电气百科

冲击式汽轮机

汽轮机按工作原理的不同,有冲击式汽轮机和反击式汽轮机两类  。
冲击式汽轮机亦称“冲动式汽轮机”。主要依靠蒸汽从喷管中高速喷出时的冲击力来推动叶轮旋转的汽轮机。是近代汽轮机的基本结构型式。由喷管、隔板、动叶片、叶轮和汽缸等部件组成。蒸汽基本上只在喷管(或两静叶片间所形成的通道)中发生膨胀增速  。
与反击式汽轮机相比,具有下列特点:(1)级内压力降和焓降大部分均发生在喷管中,仅小部分发生于带有反击度动叶片的通道内,适宜于使各工作级产生较大的焓降和较大的功率;(2)整机功率相同时所必需有的级数大为减少;(3)动叶片与汽缸等固定部件之间允许有稍大的径向间隙;(4)制造成本降低;(5)级内漏汽损失较小,效率较高。带有某种反击度的多级冲击式汽轮机的应用范围已日益广泛  。

冲击式汽轮机基本信息

冲击式汽轮机冲击式多级汽轮机

如果将冲动式单级叶轮一个接一个连接起来,就组成冲动式多级汽轮机。

如图《冲动式汽轮机通流部分示意图》所示。冲动式多级汽轮机由四级组成,第一级为调节级,其余三级为压力级。调节级一般为部分进汽,其喷嘴组装于蒸汽室中。从锅炉来的新蒸汽,经过自动主汽门流入依次开启的几个调节汽门,每个调节汽门控制一个喷嘴组。当新蒸汽从调节汽门流出来便进入与其对应的喷嘴中,通过调节汽门控制进汽量,以满足外界负荷的需求。(其中1—转子;2—隔板;3—喷嘴;4—动叶栅;5—汽缸;6—蒸汽室;7—排汽管;8—轴封;9—隔板汽封)

查看详情

冲击式汽轮机造价信息

  • 市场价
  • 信息价
  • 询价

轮机

  • HL170A253-WJ-60
  • 13%
  • 长沙美能电力设备股份有限公司广州办事处
  • 2022-12-07
查看价格

轮机

  • 四支点 HLC451-WJ-75
  • 13%
  • 四川省内江蜀源水轮机有限公司
  • 2022-12-07
查看价格

轮机

  • HLC451-WJ-75
  • 13%
  • 四川省金堂水电设备制造股份公司
  • 2022-12-07
查看价格

轮机调速器及附属设备

  • 轮机额定流量76m3/s、转速250rpm、具有PID调节规律、双微全数字电液调速器、额定工作油压为6.3MPa、回油箱、事故配压阀组采用组合式结构、调速器采用RS485串行接口
  • 台套
  • 13%
  • 长沙美能电力设备股份有限公司
  • 2022-12-07
查看价格

汽油机

  • 油发电机组JY-6500
  • 佳友
  • 13%
  • 福建佳友机电厂昆明办事处
  • 2022-12-07
查看价格

油发电机

  • 功率10kW
  • 台班
  • 广州市2006年4季度信息价
  • 建筑工程
查看价格

油发电机

  • 功率10kW
  • 台班
  • 广州市2006年3季度信息价
  • 建筑工程
查看价格

油发电机

  • 功率10kW
  • 台班
  • 广州市2006年1季度信息价
  • 建筑工程
查看价格

油发电机

  • 功率10kW
  • 台班
  • 广州市2006年2季度信息价
  • 建筑工程
查看价格

油发电机

  • 功率10kW
  • 台班
  • 广州市2005年4季度信息价
  • 建筑工程
查看价格

汽轮机测速模块

  • K-FC01-A.0.1
  • 3块
  • 3
  • 和利时
  • 中高档
  • 不含税费 | 含运费
  • 2018-03-15
查看价格

汽轮机

  • 46#
  • 800公L
  • 3
  • 不含税费 | 不含运费
  • 2015-01-09
查看价格

汽轮机(一期项目)

  • 中温中压单缸凝汽轮机
  • 1台
  • 1
  • 杭州汽轮机股份有限公司
  • 中高档
  • 含税费 | 含运费
  • 2022-09-26
查看价格

汽轮机(二期项目)

  • 中温中压单缸凝汽轮机
  • 1台
  • 1
  • 洛阳中重发电设备有限责任公司
  • 中高档
  • 含税费 | 含运费
  • 2022-09-22
查看价格

汽轮机伺服模块

  • K-SV01-A.0.1
  • 6块
  • 3
  • 和利时
  • 中高档
  • 不含税费 | 含运费
  • 2018-03-15
查看价格

冲击式汽轮机汽轮机简史

早在公元前120年亚历山大的希罗记述了古埃及利用空心球中蒸汽喷出的反作用力而使其旋转的装置,可称为反动式汽轮机的雏型。公元1629年意大利科学家G.de布兰卡(Giovanni de Branca)首先利用从加热盛水容器中喷出的汽流推动一个轮盘旋转,这便是冲动式汽轮机的原形,但这些只是玩物。直到1883年,瑞典工程师C.G.P.de拉伐尔(CarlGustaf Patrik de Laval)建造了第一台有实用价值、功率为3.67kW的汽轮机。这是一台单级冲动式汽轮机,转速高达26000r/min。他解决了由于高转速引起的机械强度和振动问题以及喷嘴设计问题。1884年英国的C.A.帕森斯(Charles Algernon Parsons)制成7.46kW的多级反动式汽轮机。这台汽轮机具有两个叶轮组,每组共有15个叶轮,叶轮直径仅有75mm,转速为17000r/min。1900年美国的C.G.柯蒂斯(Charles Gordon Curtis)制成单压力级多调节级的冲动式汽轮机。进入20世纪,法国A.拉托(Auguste Rateau)、瑞士H.佐莱制成了多级冲动式汽轮机;1910年容克斯脱莱姆(Ljungstrom)兄弟建议制成辐流式汽轮机,上述多级反动式和冲动式汽轮机便是现代大容量汽轮机的基形 。

19世纪后期,随着电动机和电灯的出现,电力负荷迅速增长,促使电力工业的发展。进入20世纪,电力工业的发展更加突飞猛进,原来作为发电厂原动机的往复式蒸汽机,因其固有的缺点——单机容量小、效率低、转速低、运行不平稳,而让位于汽轮机。

汽轮机的发展往往是伴随着增大单机容量和提高蒸汽参数,但发展过程有反复。1960年美国投入一台单机容量为325 MW的两次中间再热汽轮机,蒸汽参数为34.5MPa,649/566/566℃。但这台汽轮机的运行情况不理想,后降低参数为31MPa,610/566/566℃运行。世界上大机组的单机容量约为500~800MW,最大单轴汽轮机为1200MW,双轴为1300MW,蒸汽压力一般为16.5~18 MPa的亚临界或24 MPa左右的超临界,随着超临界压力机组的更广泛地被采用及超超临界压力机组的发展,新蒸汽温度则从538℃提高到566℃,并有向更高温度600~700℃发展的趋势,中间再热蒸汽温度则从566℃向更高温度发展。

中国第一台用于发电的汽轮机于1907年在上海投运,是英国帕森斯(Parsons)公司制造的800kW机组。1949年前容量最大的机组是1941年在抚顺发电厂投产的53 MW中压机组,蒸汽参数最高的是1947年在上海杨树浦电厂投运的15MW前置式汽轮机,汽压为8.4MPa,汽温为496℃。50年代初期引进捷克和苏联技术,中国制造的第一台汽轮机,容量为6MW,1956年首先在淮南电厂投运。以后陆续制造出12、25、50MW中压和高压机组,1959年投运了100MW汽轮机。再后中国自行设计制造了125、200、300MW汽轮机,分别在1969年、1972年和1974年投入运行。以后1982年和1985年分别投运了日本三菱(Mitsubishi) 公司 350 MW 和法国阿尔斯通(Alsthom) 公司 600MW机组。引进美国西屋(Westinghouse,WH)公司技术自行制造的亚临界压力300MW和600MW机组分别于1987年和1989年投运。90年代初又相继引进了ABB (Asea Brown Boveri)超临界压力600MW汽轮机及苏制300、500和800MW超临界压力汽轮机和西门子(Siemens)公司超临界压力900MW汽轮机 。

查看详情

冲击式汽轮机汽轮机的级

一列喷嘴叶栅和其后面相邻的一列动叶栅构成的基本作功单元称为汽轮机的级,它是蒸汽进行能量转换的基本单元。根据蒸汽在汽轮机内能量转换的特点,可将汽轮机的级分为纯冲动级、反动级、带反动度的冲动级和复速级等几种。

各类级的特点:

(1)纯冲动级:蒸汽只在喷嘴叶栅中进行膨胀,而在动叶栅中蒸汽不膨胀。它仅利用冲击力来作功。在这种级中:p1=p2;Dhb=0;Ωm=0。

(2)反动级:蒸汽的膨胀一半在喷嘴中进行,一半在动叶中进行。它的动叶栅中不仅存在冲击力,蒸汽在动叶中进行膨胀还产生较大的反击力作功。反动级的流动效率高于纯冲动级,但作功能力较小。在这种级中:p1>p2;Dhn≈Dhb≈0.5Dht;Ωm=0.5。

(3)带反动度的冲动级:蒸汽的膨胀大部分在喷嘴叶栅中进行,只有一小部分在动叶栅中进行。这种级兼有冲动级和反动级的特征,它的流动效率高于纯冲动级,作功能力高于反动级。在这种级中:p1>p2;Dhn>Dhb>0;Ωm=0.05~0.35。

(4)复速级:复速级有两列动叶,现代的复速级都带有一定的反动度,即蒸汽除了在喷嘴中进行膨胀外,在两列动叶和导叶中也进行适当的膨胀。由于复速级采用了两列动叶栅,其作功能力要比单列冲动级大。

查看详情

冲击式汽轮机常见问题

查看详情

冲击式汽轮机汽轮机的应用

多级汽轮机从原理上说是将若干个单级串联在一根机轴上。这样,虽然蒸汽在汽轮机中总的等熵焓降很大(有时达2000kJ/kg),但在各级中顺序膨胀,每级的等熵焓降可减小到合理的程度,使各级都能在较理想的速度比下工作,获得较高的效率。多级汽轮机的轴向长度比多列速度级大。

多级汽轮机在船舶上多用作推进装置的主机,或用作经济性要求较高的大型辅机的原动机(如船舶电站汽轮机)。

多级汽轮机在船舶上有多种形式的组合。常见的有两大类:

(1)冲动式多级汽轮机:其中第一级常用复速级作为调节级(有的也用单级冲动级),其后由若干个冲动级、纯冲动级或复速级组成非调节级级组。为了提高效率,各级常带有不大的反动度。

(2)混合式多级汽轮机:它有两种形式:一种是第一级为复速级或单级冲动级,其后由若干个反动级组成非调节级级组;另一种形式是第一级是复速级,而非调节级级组由若干个冲动级和若干个反动级组成。

作为船舶主机的多级汽轮机由于级数多,常分成高、低压缸汽轮机,平行配置,共同驱动减速器的第一级大齿轮。也有以高、中、低压三缸汽轮机组成的船舶主机。

多级汽轮机中,如级组的等熵焓降一定,则由反动级组成的级数,远较由冲动级组成的级数为多 。2100433B

查看详情

冲击式汽轮机冲动式汽轮机的技术派系

20世纪前期,世界工业发达国家汽轮机制造业竞争激烈,许多派系已被淘汰,发电用汽轮机仅留下多级轴流的反动式和冲动式汽轮机。

(1)通用电气公司汽轮机的特点:采用冲动式。单机容量在600MW以下时,高、中压合缸,流向相反。600 MW以上高、中压分缸,高压第一级为分流,其余为单流;中压缸为分流。采用自由悬挂主汽门和调节汽门。外缸在中心线上支承。每个转子有两个轴承,采用普通椭圆瓦或可倾瓦。推力轴承为固定斜面瓦块。大型汽轮机采用整锻转子。调节级叶片为双层围带,第一层是整体围带,其上有铆钉头用以铆接第二层围带。中间级叶片均为铆接围带。用于50Hz的末级叶片顶部整体围带,连结成组。60Hz的末级叶片采用板形铆接围带。末级叶片均有拉筋 (金)。喷嘴室为锻造,配汽采用联合调节方式,装有进汽方式选择器,运行人员可选择喷嘴调节或节流调节方式 。

(2)西屋电气公司汽轮机特点: 容量大于150~200MW的汽轮机为反动式,中小容量机组为冲动式。小于550 MW的机组采用高中压合缸,流向相反。550以上至900MW的机组则为四缸四排汽口,高中压分缸,高压缸为单流或分流,中压缸均为分流。调节级为单列冲动式,其余叶片均为反动式。调节级动叶片每三片的叶根连成一组,由整块锻件制成。高压级为直叶片,中压级所有动叶片均为75mm宽,锻制锥形扭叶片,轴向插入枞树形叶根。用于60Hz的末级叶片为自由叶片。中间再热主汽门和调节汽门为联合体,在快关时,可承受冲击负荷。主蒸汽和再热蒸汽进口处具有防止高温蒸汽与转子表面接触的装置,可降低转子表面温度 。

制造冲动式汽轮机的除美国通用电气公司之外,还有日本的东芝(Toshiba)、日立(Hitachi),法国的阿尔斯通,意大利的安莎多(Ansaldo),英国的通用电气公司(GEC) 和前苏联的列宁格勒金属工厂(ЛМ3)和哈尔科夫透平发电机厂(ХТГЗ)等 。

查看详情

冲击式汽轮机工作原理

蒸汽在汽轮机级内的能量转换过程,是先将蒸汽的热能在其喷嘴叶栅中转换为蒸汽所具有的动能,然后再将蒸汽的动能在动叶栅中转换为轴所输出的机械功。具有一定温度和压力的蒸汽先在固定不动的喷嘴流道中进行膨胀加速,蒸汽的压力、温度降低,速度增加,将蒸汽所携带的部分热能转变为蒸汽的动能。从喷嘴叶栅喷出的高速汽流,以一定的方向进入装在叶轮上的动叶栅,在动叶流道中继续膨胀,改变汽流速度的方向和大小,对动叶栅产生作用力,推动叶轮旋转作功,通过汽轮机轴对外输出机械功,完成动能到机械功的转换。由上述可知,汽轮机中的能量转换经历了两个阶段:第一阶段是在喷嘴叶栅和动叶栅中将蒸汽所携带的热能转变为蒸汽所具有的动能,第二阶段是在动叶栅中将蒸汽的动能转变为推动叶轮旋转机械功,通过汽轮机轴对外输出。

查看详情

冲击式汽轮机汽轮机级内损失

蒸汽在级内流动产生的能量损失,主要包括叶栅损失、余速损失、叶轮摩擦损失、鼓风损失、斥汽损失、漏气损失、湿气损失等项 。

叶栅损失:包括型面损失和端面损失,前者有叶型表面附面层的摩擦损失,附面层脱离引起的涡流损失,叶片出口边的尾迹损失以及汽流接近声速和超声速时产生的冲波损失。后者有叶栅汽道上下两个端面附面层中的摩擦损失和附面层内自凹面向背面横向流动产生的二次流损失。叶栅中的各项损失可由叶栅风洞试验确定,可用速度系数来表示损失大小,或用能量损失系数或叶栅中总压力损失系数表示。影响叶栅损失的重要因素是型线、型面光滑度、叶片高度、相对栅距、安装角、汽流角、冲角和马赫数。

速度系数是实际速度与理想速度之比。现代汽轮机的静叶栅速度系数ᵠ可达0.95~0.98。 ᵠ值随静叶高度增高而加大。动叶栅速度系数ψ为0.90~0.97。ψ值与级的反动度有一定关系。反动度越小,ψ值也越低。在冲动级中选用适当的反动度,可减少动叶栅中的损失。 当反动度等于50%时ψ=ᵠ。

余速损失:蒸汽从动叶出口流出时尚有一定的速度,其动能不能再利用时所造成的损失称为余速损失。在多级汽轮机中,前一级余速可被下一级全部或部分利用,以余速利用系数μ来表示。一般μ=0~1。级后有抽汽口的级,μ=0.5。若前后二级的平均直径无阶跃性变化,μ值可达0.8~1,调节级的直径通常大于其后的第一压力级直径,为充分利用其余速,可加装汽流导向板。末级的余速是无法再利用的。各级余速的利用提高了汽轮机的内效率。

叶轮摩擦损失:由于蒸汽的黏性在叶轮表面形成附面层,由叶轮带动旋转,与蒸汽黏附在隔板和汽缸壁上的附面层之间形成摩擦阻力;并由于叶轮离心力的带动,在汽室内形成涡流。克服摩擦阻力和涡流所形成的能量损失叫做摩擦损失。摩擦损失通常由实验确定,并可用斯托多拉 (Stodola) 经验公式估算:

式中u为圆周速度,m/s;d为级平均直径,m;v为汽室中蒸汽比容,m3/kg;K1为系数,一般为1.02~1.3。

因叶轮摩擦损失与蒸汽比容成反比,汽轮机高压各级比容小,该项损失较大,在低压各级,由于比容很大,该项损失有时可忽略不计 。

鼓风损失和斥汽损失:级的喷嘴组弧段占全圆周的比例,称部分进汽度。当级的部分进汽度小于1时,动叶栅只在进入装有喷嘴弧段时才有工作汽流通过。当动叶进入无喷嘴弧段时,动叶产生鼓风作用,消耗一部分有用功,形成鼓风损失。当动叶再度进入装有喷嘴的弧段时,工作汽流需首先排斥并加速停滞在动叶汽道中的蒸汽,因而消耗一部分能量,称为斥汽损失。

鼓风损失可由经验公式估算:

式中K2为系数,一般取0.4;e为部分进汽度;l为动叶高度。如果将不进汽弧段处的动叶片用护罩包住,使鼓风区域缩小,将可减少鼓风损失。

斥汽损失由下式估算:

式中B、l为动叶片宽度及高度,m;A为喷嘴出口面积,m2;m为喷嘴组数(当e=1时m=0);Nu为轮周效率;△ht为级的理想焓降。

漏汽损失:冲动式汽轮机隔板两侧有较大压差,在隔板与转轴之间的间隙中,将有一部分蒸汽漏过,造成漏气损失;具有反动度的冲动级和反动级,动叶两侧存在压差,亦有一部分蒸汽由动叶顶端与汽缸之间的间隙漏过。

湿汽损失:凝汽式汽轮机的后几级常在湿蒸汽区工作,存在着湿汽损失:湿蒸汽在静叶栅中膨胀加速时,一部分蒸汽凝结成水滴,使做功蒸汽减少;水滴小于汽流流速,对高速汽流形成摩擦阻力;由于动叶片圆周速度较大,水滴集中撞击在叶片进口边背面上,对叶轮产生的制动作用;疏水排出级外所造成的流量损失等。这些损失不能准确直接计算。总的湿汽损失大小决定于蒸汽干度,可由下式估算:

Δh2=(1-xm)△hu式中xm为级前后平均蒸汽干度,△hu为级的有效焓降。对于凝汽式汽轮机排汽湿度应加以限制,控制在12%~14%。xm>14%后湿汽损失将会急剧增加。

由于蒸汽湿度不仅造成能量损失,而且形成的水滴对动叶片材料有磨蚀作用。为了减轻对动叶片的水蚀作用,通常在汽轮机末两级采用去湿装置 。

查看详情

冲击式汽轮机文献

凝汽式汽轮机 凝汽式汽轮机

凝汽式汽轮机

格式:pdf

大小:709KB

页数: 4页

凝汽式汽轮机

汽轮机启动 汽轮机启动

汽轮机启动

格式:pdf

大小:709KB

页数: 12页

汽轮机启动 4.1 汽轮机启动的有关规定 4.1.1 启动方式划分 4.1.1.1 DEH在每次挂闸时,自动根据汽轮机启动前高压内缸调节级处内上壁金属温度来 划分机组的启动状态,若内上壁金属温度测点坏,自动由该处下壁金属温度信号来代替: 1)冷态启动 T:<150℃ 2)温态启动 T:150℃~ 300℃ 3)热态启动 T:300℃~ 400℃ 4)极热态启动 T:≥ 400℃ 4.1.1.2 按启动时汽缸的进汽方式划分: 1)高、中压缸联合启动 2)中压缸启动 4.1.2 启动参考时间:见下表(单位 min) 表 4.1 启动状态 冲转方式 冲转至额定转速 时间( min) 并网至额定负荷 时间( min) 冲转至额定负荷 时间( min) 冷态 高、中压缸冲转 ~ 125 ~320 ~445 温态 高、中压缸冲转 ~25 ~115 ~140 热态 高、中压缸冲转 ~17

供热式汽轮机背压式汽轮机

供热用的背压式汽轮机用于驱动发电机时,发电量取决于供热所需的蒸汽量;用于驱动泵、鼓风机等机械时,则供热的蒸汽量取决于被驱动机械的功耗。背压式汽轮机应用的局限性是不能同时满足热、电(或动力)负荷变动的要求。因此,用背压式汽轮机驱动发电机时,常与其他类的汽轮机并列运行或并入电网,以满足电负荷变化的需要。用它驱动泵、鼓风机时则由其他汽源来满足热负荷变化的需要。抽汽式汽轮机可按热、电(或动力)负荷变化的要求进行调整,同时满足供热和供电(或供动力)的需要,因而应用范围较广。

背压式汽轮机共有两种机型,一种为435℃进汽式,另一种为470℃进汽式。两种汽轮机均由单缸、中温、高次压、冲动式、背压汽轮机与锅炉、发电机及其它附属设备组成。

查看详情

反动式汽轮机分类

反动式汽轮机一般都是多级的。按照蒸汽在汽轮机中的流动方向分类,反动式汽轮机可分为轴流式和辐流式两种。

查看详情

抽凝式汽轮机简介

抽汽式汽轮机是由汽轮机中间级抽出一部分蒸汽供给用户,即在发电的同时还供热的汽轮机。

根据用户需要可以设计成一次调节抽汽式或二次调节抽汽式。

一次调节抽汽式汽轮机

又称单抽汽式汽轮机。由高压部分和低压部分组成,相当于一台背压式汽轮机与一台凝汽式汽轮机的组合。新汽进入高压部分作功,膨胀至一定压力后分为二股,一股抽出供给热用户,一股进入低压部分继续膨胀作功,最后排入凝汽器。

抽汽压力设计值根据热用户需要确定,并由调压器控制,以维持抽汽压力稳定。单抽汽式汽轮机的功率为高、低压部分所生产功率之和,由进汽量和流经低压部分蒸汽量所决定。调节进汽量可以得到不同的功率。因此,在一定范围内,可同时满足热、电负荷需要。单抽汽式汽轮机在供热抽汽量为零时,相当于一台凝汽式汽轮机;若将进入高压缸的蒸汽全部抽出供给热用户,则相当于一台背压式汽轮机。但实际运行中,为了冷却低压缸,带走由于鼓风摩擦损失所产生的热量,必须有一定量的蒸汽流过低压部分进入凝汽器,所需最小流量约为低压缸设计流量的10%。单抽汽式汽轮机的工况如图所示,它表示出新汽量(Do)、抽汽量(Ce)、电功率(Ni)三者之间的关系;图中Do表示凝汽量,ohh线为抽汽量为零时的凝汽工况线,cdd 线为抽汽量等于新汽量时的背压工况线,在以上两线之间为等抽汽量与等凝汽量工况线,它表示在不同抽汽量下与不同凝汽量下全机电功率与蒸汽流量的关系。在最大抽汽量下汽轮发电机组的最大电功率如图中e点所示;图中如已知Do、De、Do和Ni4个量中的任何两个量,可求得另外两个量。

二次调节抽汽式汽轮机

又称双抽汽式汽轮机。可以同时满足不同参数的热负荷。整个汽轮机分为高、中、低压 3部分。新汽进入高压部分作功,膨胀到一定压力,抽出一部分蒸汽供给热用户;另一部分进入中压部分继续膨胀作功后,再抽出一部分供暖,其余蒸汽经过低压部分排入凝汽器。

工作原理

双抽汽式汽轮机的工况图是按照一定的典型系统和额定参数绘制的。若汽轮机运行条件不同于绘制工况时,应进行适当修正。调节抽汽式汽轮机各缸均单独设置配汽机构,分别控制各缸进汽量。中、低压缸配汽机构有调节阀和旋转隔板两种形式。功率较小的抽汽机组采用旋转隔板形式有利于设计成单缸结构;高压缸则普遍采用喷嘴调节方式,调节级多数为双列级,以保证有足够大的通流能力。

双抽汽式汽轮机在高、低压缸流量均接近设计值时具有较高的发电经济性。由于热负荷的变化,有时流经各缸的流量差别很大,在某些工况下发电经济性较低。因此,调节抽汽式汽轮机应根据主要热负荷情况进行设计,合理分配各缸流量,以保证长期运行中有较高经济性。合理选定抽汽压力对机组经济性有明显影响,在满足热用户前提下,应尽量降低抽汽压力。早期生产的供暖抽汽机组,抽汽压力为0.12~0.25兆帕,近年已将下限降为0.07兆帕。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639