选择特殊符号
选择搜索类型
请输入搜索
在测量模型中,由输入量的已知量值计算得到的值是输出量的测得值时,输入量与输出量之间的函数关系。
《计量学名词》第一版。 2100433B
你好,定义异形柱。
定位测量就是确定建筑物的位置,按照总平面图根据相邻参照物或根据坐标定出建筑物的具体位置。对于比较规则的建筑物一般是定出四个角;当然了规则的建筑物4个角也是建筑物的主要控制轴线。对于不规则的建筑物一般定...
我画图自然地面相对标高-1.05m,车库地标高-1.53,顶0.66,车库与室内地面(±0.000)连成一体,请问我该如何定义楼层,如何画 楼层正常定义即可,车库可以设置为-1层,底标高为-1。53,...
自定义函数在计算机财务模型中的应用及对策建议
自定义函数是计算机辅助财务决策的重要工具,其在创建和使用过程中经常会存在一些问题,本文对这些问题进行分类并分析其原因,提出解决对策。
深基坑定义
深基坑 基坑工程简介: 基坑工程主要包括基坑支护体系设计与施工和土方开挖,是一项综合 性很强的系统工程。它要求岩土工程和结构工程技术人员密切配合。基坑 支护体系是临时结构,在地下工程施工完成后就不再需要。 基坑工程具有以下特点: 1)基坑支护体系是临时结构,安全储备较小,具有较大的风险性。基 坑工程施工过程中应进行监测,并应有应急措施。在施工过程中一旦出现 险情,需要及时抢救。 2)基坑工程具有很强的区域性。如软粘土地基、黄土地基等工程地质 和水文地质条件不同的地基中基坑工程差异性很大。同一城市不同区域也 有差异。基坑工程的支护体系设计与施工和土方开挖都要因地制宜,根据 本地情况进行,外地的经验可以借鉴,但不能简单搬用。 3)基坑工程具有很强的个性。基坑工程的支护体系设计与施工和土方 开挖不仅与工程地质水文地质条件有关,还与基坑相邻建(构)筑物和地 下管线的位置、抵御变形的能力、重要性,以
很多基于不同物理效应的技术被发展出来来测量样品的电学功函数。可以区分出两类功函数测量的试验方法:绝对测量和相对测量。
第一类方法利用样品由光吸收(光发射)所引发的电子发射,通过高温(热发射)、或者电场(场发射),以及使用电子隧穿效应。
所有相对测量方法利用了样品与参照电极的接触势差。实验上,是使用二极管的阴极电流或者样品与参照物的间由人工改变的两者间电容导致的位移电流等方法(开尔文探测、开尔文探测力显微镜)来测量的。
光电发射光谱学(PES)是基于外光电效应的光谱学技术术语。对于紫外光电子光谱学(UPS),固体样品的表面被用紫外(UV)光激发然后发射电子的动能得到分析。因为紫外光是能量hν低于100eV的电磁辐射,它能够只抓出价电子。因为固体中电子逃逸深度的限制紫外光电子光谱对表面非常敏感,因为信息深度的范围为2 – 3个单层。同时测量原理限制了光电发射光谱学被用于UHV情形。得到的光谱通过提供态密度、占据态及功函数等信息反应了样品电子结构。
推迟二极管方法是最简单和最古老的的测量功函数的方法之一。它是源自发射器电子的热发射。收集到样品的电子电流密度J取决于样品的功函数φ且可通过Richardson–Dushman方程J=ATe计算,其中A,Richardson常数,是具体的材料常数。电流密度随温度迅速增长而随功函数指数下降。改变功函数可以简单通过在样品与电子发射器之间施加一个推迟势V来决定;上述方程中φ被e(Φ V)取代。在恒定电流下测到的推迟势差与功函数的改变相等,假设发射器的功函数与温度不变。
也可以使用Richardson–Dushman方程通过样品的温度改变直接决定功函数。重写方程得ln(J/T) =ln(A) − φkT。描绘ln(J/T)和1 /T得到的曲线的斜率 − φ /k允许决定样品的功函数。
最有名的应力函数是弹性力学平面问题中的艾里应力函数。如果没有体力,平面中的三个应力分量σxx、σyy、τxy满足下列方程:
根据方程(1),可将应力分量用一个函数φ(x,y)表示为:
φ便是艾里应力函数。对于均匀和各向同性的物体,φ是一个双调和函数,即它满足下列双调和方程:
ΔΔφ=0, (3)
式中Δ是平面的拉普拉斯算符。引入φ后,平面问题原来的8个未知函数(两个位移分量、三个应变分量和三个应力分量σxx、σyy、τxy就归结为一个函数φ。这对求解具体问题很有好处。
在弹性柱体的扭转问题中,剪应力分量τxz、τyz满足下列平衡方程:
据此可将τxz、τyz用一个函数Ψ(x,y)表示为:
Ψ称为普朗特应力函数。对于均匀和各向同性的柱体,Ψ满足下列方程:
ΔΨ=-2Gθ, (6)
式中G为材料的剪切模量(见材料的力学性能);θ为单位长度的扭转角。
当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;
当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
因为在
(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图像不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。
在一个反比例函数图像上任取两点,过原点分别作x轴,y 轴的平行线,与坐标轴围成的矩形面积为|k| ,
反比例函数上一点 向x 、y 轴分别作垂线,分别交于y轴和x轴,则QOWM的面积为k|,则连接该矩形的对角线即连接OM,则RT△OMQ的面积=½|k|
反比例函数的图像既是轴对称图形,又是中心对称图形,它有两条对称轴 y=±x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数图像不与x轴和y轴相交的渐近线为:x轴与y轴。
k值相等的反比例函数图像重合,k值不相等的反比例函数图像永不相交。
|k|越大,反比例函数的图像离坐标轴的距离越远。
反比例函数图像是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,其对称轴为y=x和y=-x;反比例函数图像上的点关于坐标原点对称。
图像关于原点对称。若设正比例函数y=mx与反比例函数 交于A、B两点(m、n同号),那么A B两点关于原点对称。
反比例函数关于正比例函数y=±x轴对称,并且关于原点中心对称。
与正比例函数交点
设在平面内有反比例函数 和一次函数y=mx+n,要使它们有公共交点,则反比例减去一次函数为零 。