选择特殊符号
选择搜索类型
请输入搜索
本项目研究了层状复合陶瓷的夹层材料、层状复合方式制备工艺、界面结构特征等,制备出多种弱夹层、强夹层、多相复合协同增韧层状复合陶瓷,其中ZTA/Al2O3强夹层层状复合陶瓷的冲击韧性是单相Al2O3陶瓷的5.6倍,单相ZTA陶瓷的2.8倍;而且复合陶瓷的断裂韧性和维氏硬度在平行于夹层方向和垂直于夹层方向差别不大,克服了弱夹层陶瓷各向异性的缺点;通过层状复合陶瓷断口分析和界面HREM分析,确证层状复合陶瓷的主要增韧机理是多层介质的裂纹止裂和裂纹分层效应。发表学术论文26篇,培养博士生1名,硕士生5名。提出了层状复合陶瓷增韧机理及其优化设计方案,为层状复合材料的开发与应用奠定理论基础。
批准号 |
59672010 |
项目名称 |
层状复合与多相复合协同增韧陶瓷研究 |
项目类别 |
面上项目 |
申请代码 |
E0204 |
项目负责人 |
杨辉 |
负责人职称 |
教授 |
依托单位 |
浙江大学 |
研究期限 |
1997-01-01 至 1999-12-31 |
支持经费 |
10(万元) |
a)耐磨性能:金属陶瓷内衬复合管内层陶瓷层为刚玉,维氏硬度在1300-1500HV,相当于HR0以上,因此对电力、矿山所输送的任何介质均具有很高的耐磨性。b)耐蚀性及抗结垢性能:因内衬刚玉属中性材料,...
陶瓷复合管全称陶瓷内衬复合钢管。陶瓷复合管,是采用高技术生产工艺--自蔓燃高温离合合成法制造。该管从内到外分别由刚玉陶瓷、过渡层、钢三层组成,陶瓷层是在2200℃以上高温形成致密刚玉瓷(AL2O3),...
陶瓷复合管全称陶瓷内衬复合钢管。陶瓷复合管,是采用高技术生产工艺--自蔓燃高温离合合成法制造。该管从内到外分别由刚玉陶瓷、过渡层、钢三层组成,陶瓷层是在2200℃以上高温形成致密刚玉瓷(AL2O3),...
陶瓷/不锈钢层状复合材料研究
对1.0 mm的不锈钢钢板进行抛砂粗化处理,用本地瓷土制备2.0 mm厚度的陶瓷片,用环氧树脂粘接剂将陶瓷片和不锈钢薄板多层粘接固化,制备了陶瓷/不锈钢层状复合材料。对制备的复合材料进行了性能测试,断裂韧性达到9.6 MPa·m1/2。用层状复合材料进行冲击磨损试验,耐磨性高出高锰钢160%,将高锰钢镶嵌层状复合材料后,使零件的使用寿命提高了2倍。
针对聚碳酸酯(PC)促进核壳粒子增韧聚对苯二甲酸丁二酯(PBT)共混体系脆韧转变提前发生和PBT促进核壳粒子增韧PC体系冲击韧性显著提高的现象,提出多相聚酯/核壳粒子共混体系双向协同增韧的观点。课题所用增韧剂为反应性核壳粒子MBS-g-GMA,探讨协同增韧机理。研究PBT与PC之间的酯交换反应程度、PBT结晶行为变化、PC物理老化行为改变与协同增韧的关系。利用Vu-Khanh方程、Eyring方程、Ludwik-Davidenkov-Orowan脆韧转变理论将多相共混体系协同增韧与共混物断裂行为变化相关联。在协同增韧作用下,通过设计MBS-g-GMA内部结构控制其空洞化能力制备出更高韧性的合金材料。本课题通过第三组分聚合物引入改变基体链结构、聚集态结构、物理老化等特性,从而改变增韧塑料断裂行为,实现对结晶性、物理老化特性塑料协同增韧,丰富高分子增韧理论,指导高韧工程塑料合金开发有重要意义
采用乳液聚合方法制备了MBS-g-GMA反应性核壳粒子用于PBT/PC共混物的增韧改性。主要研究了PBT、PC之间的酯交换反应程度、酯交换的抑制、酯交换促进剂与抑制剂对MBS-g-GMA增韧PBT/PC性能的影响;考察了PC对PBT结晶行为的改变;研究了PC物理老化行为与PBT协同增韧的关系;利用Vu-Khanh方程、Eyring方程、Ludwik-Davidenkov-Orowan脆韧转变理论分析了多相聚酯共混体系的断裂行为;研究了核壳粒子微观结构调控对共混物性能的影响。通过研究发现加工温度和PBT与PC的组成对二者的酯交换影响显著,共混物中磷酸类化合物的引入可以降低PBT/PC的酯交换程度。抑制酯交换不利于MBS-g-GMA对PBT/PC的增韧。酯交换促进剂的加入提高了MBS-g-GMA对PBT/PC的增韧能力。PC的加入降低了PBT的结晶速度和结晶能力,对晶型没有改变。PBT影响PC的物理老化能力,减弱了物理老化对PC断裂行为的影响。PC的主要贡献是在共混物受到冲击外力作用时,首先发生屈服形变。而界面层的PC由于与PBT之间的交换反应导致二者之间有较好的界面结合强度,因此促进PBT基体剪切屈服的提前发生,起到协同增韧作用。通过调控MBS-g-GMA核壳粒子的微观结构可以改变PBT/PC共混物的断裂行为,实现材料强度与韧性的平衡,获得冲击强度高于900J/m,屈服应力大于50MPa的共混材料。本课题通过第三组分聚合物引入改变基体性质,从而改变增韧塑料断裂行为,实现对塑料协同增韧,指导高韧工程塑料合金开发、丰富高分子增韧理论有重要实用价值和理论意义。
陶瓷基复合材料的研制与应用将是复合装甲材料的总趋势,开展增韧陶瓷材料的动力学响应、破坏特性、动态本构模型、失效特性的研究都是分析增韧陶瓷装甲抗侵彻性能的关键因素。研究内容有:(1)利用材料实验机、分离式霍普金森压杆和轻气炮实验装置对增韧陶瓷试件实施准静态、低、高应变率下的压缩实验,测量材料压缩强度、屈服强度等材料性能参数,得到材料在较宽应变率范围内完整的应力应变曲线,进一步分析增韧陶瓷材料的应变率效应、动力学响应和破坏特性。(2)利用声发射技术、扫描电镜等对实验后的试件进行测试,分析试件内部微观结构的破坏特征和增韧机制。(3)考虑应变率、损伤的影响,建立能准确描述增韧陶瓷材料的动力学行为的动态本构模型。(4)利用自行开发的多物质流体程序对增韧陶瓷材料抗侵彻问题进行数值模拟,来验证和完善理论模型;为提高增韧陶瓷材料的抗侵彻能力,为新型陶瓷装甲的设计提供理论依据和技术支撑。