选择特殊符号
选择搜索类型
请输入搜索
电力电子学是一门利用电力电子器件对电能进行变换与控制的交叉技术学科,它包括对电压、电流、频率和相位的波开分析和电能变换与控制方法的研究等方面。该学科方向由三部分内容组成,即电力电子器件、电力电子电路、电力电子系统及其控制。
本书的目的是着生研究各种电能变换电路的基本工作原理、电路结构、电气性能、波形分析方法和参数计算等,并培养学生的设计和实验调试能力。本书可作为电气工程及自动化专业本科教材,也可作为电气工程领域及工业自动化领域研究生的参考书。
第1章 绪论
1. 1 概述
1. 2 电力电子学的发展历程
1. 3 电力电子学的任务及面临的问题
1. 4 电力电子学的应用领域
1. 5 电力电子学的未来前景
1. 6 电力电子的基本变换形式
1. 7 说明
第2章 电力电子器件的原理与特性
2. 1 电力电子器件的发展. 分类与应用
2. 1. 1 电力电子器件及其发展现状
2. 1. 2 常用电力电子器件的分类及其应用领域
2. 1. 3 电力电子器件的发展趋势
2. 2 功率二极管
2. 2. 1 功率二极管的基本特性
2. 2. 2 二极管的基本应用
2. 3 晶闸管 SCR
2. 3. 1 结构与工作原理
2. 3. 2 晶闸管的基本特性
2. 3. 3 晶闸管的主要特性参数
2. 3. 4 晶闸管家族的其他主要电力电子器件
2. 4 可关断晶闸管 GTO
2. 4. 1 结构与工作原理
2. 4. 2 特性与参数
2. 5 电力晶体管 GTR或BJT
2. 5. 1 电力晶体管的结构
2. 5. 2 特性与参数
2. 5. 3 GTR的二次击穿与安全工作区
2. 6 电力场效应晶体管 电力MOSFET
2. 6. 1 概述
2. 6. 2 电力MOSFET的静态特性与参数
2. 6. 3 电力MOSFET的动态特性和参数
2. 7 绝缘栅双极晶体管 1GBT
2. 7. 1 IGBT的工作原理
2. 7. 2 IGBT的基本特性
2. 7. 3 擎住效应
2. 7. 4 IGBT的安全工作区
2. 8 其他新型场控器件
2. 8. 1 MOS控制晶闸管MCT
2. 8. 2 集成门极换流晶闸管IGCT
2. 8. 3 静电感应晶体管SIT
2. 8. 4 静电感应晶闸管SITH
2. 8. 5 智能功率模块IPM
2. 9 小结
第3章 相控整流电路
3. 1 概述
3. 1. 1 整流电路的分类
3. 1. 2 可控整流电路的一般结构
3. 1. 3 学习整流电路的基本方法
3. 2 单相桥式全控整流电路
3. 2. 1 可控整流的基本概念
3. 2. 2 电阻性负载单相桥式全控整流电路
3. 2. 3 电感性负载单相桥式全控整流电路
3. 2. 4 电动机负载单相桥式全控整流电路
3. 3 单相桥式半控整流电路
3. 3. 1 电感性负载单相桥式半控整流电路
3. 3. 2 反电势负载单相桥式半控整流电路
3. 4 三相半波可控整流电路
3. 4. 1 电阻性负载
3. 4. 2 电感性负载
3. 5 三相桥式全控整流电路
3. 5. 1 三相桥式全控整流电路的工作原理及波形
3. 5. 2 基本电量计算
3. 6 三相桥式半控整流电路
3. 6. 1 电阻性负载
3. 6. 2 电感性负载工作原理及失控现象
3. 7 整流器交流侧电抗对整流电路的影响
3. 7. 1 换流期间电压电流波形分析
3. 7. 2 换相压降的计算和整流电路的输出外特性
3. 7. 3 重叠角r的计算
3. 8 小结
3. 9 习题
第4章 有源逆变与相控变流器特性
4. 1 有源逆变电路的工作原理
4. 1. 1 有源逆变的工作原理
4. 1. 2 实现有源逆变的条件
4. 2 三相有源逆变电路
4. 2. 1 三相半波逆变电路的工作原理
4. 2. 2 三相桥式全控有源逆变电路
4. 2. 3 有源逆变失败的原因与控制角的限制
4. 3 有源逆变的应用
4. 3. 1 高压直流输电
4. 3. 2 绕线式异步电动机晶闸管串级调速
4. 3. 3 两组变流器反并联的直流可逆电力拖动系统
4. 4 整流电路的功率因数及其改善的方法
4. 4. 1 整流电路的功率因数
4. 4. 2 提高功率因数的措施
4. 5 小结
4. 6 习题
第5章 直直变换器
5. 1 降压变换器
5. 1. 1 连续导电模式
5. 1. 2 不连续导电模式
5. 2 升压变换器
5. 2. 1 连续导电模式
5. 2. 2 不连续导电模式
5. 3 升-降压变换器
5. 3. 1 连续导电模式
5. 3. 2 不连续导电模式
5. 4 丘克变换器
5. 5 多象限直流变换器
5. 5. 1 桥臂式二象限直流变换器
5. 5. 2 混合桥式二象限直直变换器
5. 5. 3 四象限直直变换器
5. 6 多相多重直直变换器
5. 7 带隔离变压器的直直变换器
5. 7. 1 正激式 Forward 变换器
5. 7. 2 反激式 Flyback 变换器
5. 7. 3 推挽式变换器
5. 7. 4 半桥式变换器
5. 7. 5 全桥式变换器
第6章 无源逆变电路
6. 1 无源逆变电路的原理
6. 1. 1 单相半桥逆变电路
6. 1. 2 单相全桥逆变电路
6. 1. 3 推挽式单相逆变电路
6. 1. 4 三相桥式逆变电路
6. 2 逆变器基本类型和性能指标
6. 2. 1 逆变器基本类型
6. 2. 2 逆变器输出波形性能指标
6. 3 三相逆变器工作原理
6. 3. 1 电压型三相逆变器工作原理
6. 3. 2 电流型三相逆变器工作原理
6. 4 PWM技术
6. 4. 1 正弦脉冲宽度调制原理
6. 4. 2 SPWM的基波电压
6. 4. 3 对脉宽调制的制约条件
6. 4. 4 同步调制与异步调制
6. 4. 5 脉宽调制逆变器的基本控制方法
6. 5 逆变器输出的其他控制方法
6. 5. 1 电流跟踪控制
6. 5. 2 开关频率恒定的电流跟踪型PWM控制技术
6. 5. 3 电压空间矢量PWM控制 磁链跟踪控制
6. 6 三电平逆变器的原理与电路
6. 6. 1 电路原理
6. 6. 2 三电平逆变器的输出波形
6. 7 多重化技术
6. 7. 1 多重电流型逆变器
6. 7. 2 多重电压型逆变器
6. 8 习题
第7章 PWM整流电路及其应用
7. 1 脉冲整流电路的基本原理及分类
7. 1. 1 基本原理
7. 1. 2 PWM整流器的分类与对偶性
7. 2 电压型PWM整流器
7. 2. 1 单相PWM整流器主电路结构及工作原理
7. 2. 2 主要方程式及相量图
7. 2. 3 工作模式及能量关系
7. 2. 4 电压型三相PWM整流器主电路结构及工作原理
7. 2. 5 电压型PWM整流器的控制
7. 3 电流型PWM整流器
7. 3. 1 单相PWM整流器主电路结构及其工作原理
7. 3. 2 主要方程式及相量图
7. 3. 3 工作模式及能量关系
7. 3. 4 单相电流型晶闸管PWM整流器工作原理
7. 3. 5 三相电流型PWM整流器主电路结构及其工作原理
7. 4 电流型PWM整流器与电压型PWM整流器的性能特点比较
7. 5 PWM整流器的应用
7. 5. 1 PWM整流器在电力机车上的应用
7. 5. 2 PWM整流器在大容量通用变频器中的应用
7. 5. 3 有源电子负载
7. 5. 4 可再生能源和储能系统与电网间的互联
7. 6 小结
7. 7 习题
第8章 谐振变换器
8. 1 概述
8. 2 谐振电路的基本概念,
8. 2. 1 串联谐振电路工作原理
8. 2. 2 并联谐振电路工作原理
8. 2. 3 高阶谐振电路
8. 3 负载谐振换流器
8. 3. 1 串联负载谐振换流器
8. 3. 2 并联负载谐振换流器
8. 3. 3 高阶谐振换流器
8. 3. 4 E类换流器
8. 4 谐振开关换流器
8. 4. 1 零电流谐振开关换流器
8. 4. 2 零电压谐振开关换流器
8. 5 谐振直流连接逆变器
8. 6 双向谐振换流器
8. 7 小结
8. 8 习题
第9章 交流调压电路及交交变频电路
9. 1 概述
9. 1. 1 交流电力控制电路基本类型及其应用
9. 1. 2 交交变频电路基本类型及其应用
9. 2 单相交流调压电路
9. 2. 1 电阻负载工况分析
9. 2. 2 感性负载工况分析
9. 3 三相交流调压电路
9. 3. 1 主电路基本形式
9. 3. 2 控制原则及工作条件分析
9. 3. 3 三相交流调压电路典型波形分析
9. 4 其他类型的交流电力控制电路
9. 4. 1 交流调功电路
9. 4. 2 交流电力电子开关
9. 4. 3 交流斩波调压电路
9. 5 三相交交变频电路
9. 6 交交变频电路的运行方式及性能特点
9. 6. 1 有环流与无环流运行方式
9. 6. 2 输出电压的控制
9. 6. 3 输入侧功率因数
9. 7 其他类型的交交变频电路
9. 7. 1 三倍倍频电路
9. 7. 2 负载换流的倍频电路
9. 7. 3 矩阵式交交变频电路
9. 8 习题
第10章 电力电子装置对电网的影响及其抑制措施
10. 1 概述
10. 1. 1 谐波污染
10. 1. 2 功率因数
10. 1. 3 电磁干扰
10. 2 谐波的特性及其抑制
10. 2. 1 谐波产生机理
10. 2. 2 谐波抑制的方法
10. 3 功率因数校正
10. 3. 1 基本概念
10. 3. 2 功率因数校正电路
10. 4 电磁干扰的分类及其抑制
10. 4. 1 电磁干扰的分类
10. 4. 2 电磁干扰抑制
第11章 电力电子器件的应用基础
11. 1 晶闸管触发电路
11. 1. 1 晶闸管对触发电路的基本要求
11. 1. 2 触发电路的型式
11. 1. 3 单结晶体管移相触发电路
11. 2 可关断晶闸管 GTO 的门控电路
11. 2. 1 门极驱动特性
11. 2. 2 门极控制信号波形分析
11. 2. 3 GTO的门控电路
11. 3 电力MOSFET和IGBT的栅控电路及其模块
11. 3. 1 电力MOSFET的栅极驱动电路
11. 3. 2 IGBT的栅极驱动电路
11. 4 电力电子器件的串并联应用及系统容量扩展
11. 4. 1 晶闸管的串并联
11. 4. 2 GTO的串并联应用
11. 4. 3 功率MOSFET的并联应用
11. 4. 4 IGBT的串并联应用
11. 5 器件使用中的保护措施
11. 5. 1 晶闸管的保护措施
11. 5. 2 功率MOSFET的保护
11. 5. 3 GTO的过电流保护
11. 5. 4 IGBT的保护
11. 6 电力电子器件的缓冲电路
11. 6. 1 缓冲电路的作用与基本类型
11. 6. 2 缓冲电路的基本结构
11. 7 器件的散热
11. 7. 1 散热的原理与重要性
11. 7. 2 散热器及其安装
11. 8 习题
参考文献 2100433B
秋学期我们也有这门课,但我没选这门课,所以没办法提出具体建议,下面这是我们学校这门课的教学大纲,你参考一下,希望有帮助!课程编号:1011022 课程名称:电力电子技...
北京,30 岁左右,工作五年以上, 有经验,能独立干项目的工程师 一般年薪大概都在 25 到30万。刚毕业的 硕士,好学校(浙大,交大,华中) 的优秀毕业生 也能到15万以上。上海和深圳 还要再高一点...
本书为普通高等教育“十一五”国家级规划教材。本书着重阐明电力系统继电保护的基本原理、分析方法和应用技术。第一章绪论。第二章阐述作为继电保护硬件系统的几种主要继电器的作用原理、分析方法和整定原则。第三~...
电力电子学课后答案第四章
答 案 4.1 逆变器输出波形的谐波系数 HF与畸变系数 DF有何区别,为什么仅从谐波系数 HF还不足以说明逆 变器输出波形的本质? 答:第 n 次谐波系数 HFn为第 n次谐波分量有效值同基波分量有效值之比, 即 HFn=Vn/V1, 总谐波系 数 THD定义为: ,畸变系数 DF定义为: ,对 于第 n次谐波的畸变系数 DFn有: 谐波系数 HF显示了谐波含量,但它并不 能反映谐波分量对负载的影响程度。很显然,逆变电路输出端的谐波通过滤波器时,高次谐波将衰 减得更厉害,畸变系数 DF可以表征经 LC滤波后负载电压波形还存在畸变的程度。 答案 4.2 为什么逆变电路中晶闸管 SCR不适于作开关器件? 答:( 1)逆变电路中一般采用 SPWM控制方法以减小输出电压波形中的谐波含量,需要开关器件 工作在高频状态, SCR是一种低频器件,因此不适合这种工作方式。 (2)SCR不能自关断。而逆变
华中科电力电子学陈坚chapter2
华中科电力电子学陈坚chapter2
学习电力电子学课程需要先修电路理论、数字电子技术、模拟电子技术、电机学等课程。
书名 |
作者 |
ISBN |
出版时间 |
出版社 |
---|---|---|---|---|
《电力电子学——电力电子变换和控制技术(第三版)》 |
陈坚、康勇 |
9787040316681 |
2011年 |
高等教育出版社 |
《电力电子技术(第5版)》 |
王兆安、刘进军 |
9787111268062 |
2008年 |
机械工业出版社 |
《Power Electronics: Converters, Applications, and Design(3rd Edition)》 |
Ned Mohan,John Wiley & Sons |
- |
2003年 |
- |
(表格内容参考资料 ) |
太阳能和风能转化为电能;大容量电能的高效远距离传输;电动汽车和高铁的飞驰;这都是利用电力电子变换电路和控制系统将一种形式的电能或能量,转化为另一种形式的电能或能量的过程。电力电子技术在电力系统、新能源、交通、医疗、航空航天等领域应用广泛,有电能变换的地方就有电力电子。在此背景下,华中科技大学开设了电力电子学课程。
电力电子学课程是电气工程及其自动化专业的专业基础课程,在电气工程学科中具有重要地位。
电力电子学课程适用于电气工程及其自动化专业学习。
电力电子学课程自第3次开课课程大纲进行了微调,第3~6次开课课程大纲相较第1~2次开课课程大纲在每章末补充了单元测验,课程大纲具体内容如下:
第1章 电力电子变换和控制技术导论 |
第4讲 单相桥式相控整流电路 |
第1讲 电力电子学科的形成与发展现状 |
第5讲 三相桥式相控整流电路 |
第2讲 开关型电力电子变换器概述 |
第6讲 负载电感对单相桥式相控整流特性的影响 |
第一章单元测验 |
第7讲 负载电感对三相桥式相控整流特性的影响 |
第2章 半导体电力开关器件 |
第8讲 反电动势时相控整流特性 |
第1讲 PN结与二极管 |
第9讲 电容对不控整流电路特性的影响 |
第2讲 晶闸管的工作原理 |
第10讲 交流电路电感对整流特性的影响 |
第3讲 晶闸管的性能指标 |
第11讲 有源逆变原理 |
第4讲 电力场效应晶体管 P-MOSFET |
第12讲 有源逆变安全工作条件 |
第5讲 绝缘门极双极型晶体管 IGBT |
第13讲 三相高频PWM整流 |
第6讲 功率半导体器件性能对比 |
第五章单元测试 |
第7讲 SiC功率半导体器件 |
第6章 交流/交流变换器 |
第8讲 GaN功率半导体器件 |
第1讲 交流/交流变换器 (一) |
第9讲 功率器件的模块化与集成化 |
第2讲 交流/交流变换器 (二) |
第二章单元测验 |
第3讲 交流/交流变换器 (三) |
第3章 直流/直流变换器 |
第六章单元测验 |
第1讲 直流/直流降压变换器工作原理 |
第7章 辅助元器件和系统 |
第2讲 直流/直流降压变换器特性分析 |
第1讲 驱动电路的作用 |
第3讲 直流/直流降压变换器设计示例 |
第2讲 SCR的驱动电路 |
第4讲 直流/直流升压变换器工作原理 |
第3讲 BJT的驱动电路 |
第5讲 直流/直流升压变换器特性分析 |
第4讲 开关器件的安全工作区 |
第6讲 直流降压-升压变换器工作原理 |
第5讲 缓冲器 |
第7讲 直流升压-降压变换器特性分析 |
第6讲 限幅箝位缓冲电路的工作原理 |
第8讲 正激变换器的工作原理 |
第七章单元测试 |
第9讲 反激变换器的工作原理 |
第8章 谐振开关型变换器 |
第10讲 隔离型全桥直流直流变换器 |
第1讲 软开关变换器 |
第三章单元测验 |
第2讲 软开关变换器1 |
第4章 直流/交流变换器(逆变器) |
第3讲 软开关变换器2 |
第1讲 逆变器的类型和性能指标 |
第4讲 软开关变换器3 |
第2讲 单相半桥逆变电路方波调制 |
第5讲 ZCS准谐振变换器 |
第3讲 单相全桥逆变电路方波调制 |
第6讲 ZVS准谐振变换器 |
第4讲 单相逆变器的单脉波脉冲宽度调制 |
第八章单元测试 |
第5讲 SPWM 基本原理 |
第9章 多级开关电路组合型电力电子变换电源的应用 |
第6讲 双极性正弦脉冲宽度调制 |
第1讲 多级开关电源 |
第7讲 单极性倍频正弦脉冲宽度调制 |
第2讲 太阳能光伏发电系统 |
第8章 SPWM的谐波特征 |
第3讲 带功率因数校正(APFC)的开关电源 |
第9讲 三相逆变电路工作原理 |
第九章单元测试 |
第四章单元测验 |
第10章 电力电子开关型电力补偿、控制器 |
第5章 交流/直流变换器(整流器) |
第1讲 电力电子开关型电力补偿、控制器1 |
第1讲 整流器的类型和性能指标 |
第2讲 电力电子开关型电力补偿、控制器2 |
第2讲 单相不控整流电路 |
第3讲 电力电子开关型电力补偿、控制器3 |
第3讲 三相不控整流电路 |
第十章单元测试 |
(课程大纲从左至右列出,表格内容参考资料 ) |