选择特殊符号
选择搜索类型
请输入搜索
磁流体发电中的带电流体,它们是通过加热燃料、惰性气体、碱金属蒸气而得到的。在几千摄氏度的高温下,这些物质中的原子和电子的运动都很剧烈,有些电子甚至可以脱离原子核的束缚,结果,这些物质变成自由电子、失去电子的离子以及原子核的混合物,这就是等离子体。将等离子体以超音速的速度喷射到一个加有强磁场的管道里面,等离子体中带有正、负电荷的高速粒子,在磁场中受到洛伦兹力的作用,分别向两极偏移,于是在两极之间产生电压,用导线将电压接入电路中就可以使用了。
磁流体发电的另一个好处是产生的环境污染少。利用火力发电,燃烧燃料产生的废气里含有大量的二氧化硫,这是造成空气污染的一个重要原因。利用磁流体发电,不仅使燃料在高温下燃烧得更加充分,它使用的一些添加材料还可以和硫化合,生成硫酸钾,并被回收利用,这就避免了直接把硫排放到空气中,对环境造成污染。
利用磁流体发电,只要加快带电流体的喷射速度,增加磁场强度,就能提高发电机的功率。人们使用高能量的燃料,再配上快速启动装置,就可以使发电机功率达到1000万kW,这就满足了一些需要大功率电力的场合。目前,中国,美国、印度、澳大利亚以及欧洲共同体等,都积极致力于这方面的研究。
磁流体发电机产生电动势,输出电功率的原理如上图。
1959年,美国阿夫柯公司建造了第一台磁流体发电机,功率为115kW。此后各国均有研究制造,美苏联合研制的磁流体发电机U-25B在1978年8月进行了第四次试验,气体-等离子体流量为2~4kg/s,温度为2950K,磁场为5T,输出功率1300kW,共运行了50小时。目前许多国家正在研制百万千瓦的利用超导磁体的磁流体发电机。
等离子发电机,又叫磁流体发电机,是根据霍尔效应,用导电流体,例如空气或液体,与磁场相对运动而发电的一种设备。
磁流体发电,是将带电的流体(离子气体或液体)以极高的速度喷射到磁场中去,利用磁场对带电的流体产生的作用,从而发出电来。
现在磁流体发电机制造中的主要问题是发电通道效率低,目前只有10%。通道和电极的材料都要求耐高温、耐碱腐蚀、耐化学烧蚀等,目前所用材料的寿命都比较短,因而磁流体发电机不能长时间运行。
你好, 发电机和电动机是完全可逆的,在发电机和电动机的定子上加上额定电压,转子就会旋转,用外力使发电.。。。
交流异步发电机原理: 交流异步发电机是感应电机,定子通入电流以后,部分磁通穿过短路环,并在其中产生感应电流。短路环中的电流阻碍磁通的变化,致使有短路环部分和没有短路环部分产生的磁通有了相位差,从而形成...
发电机原理及构造发电机的励磁系统
发电机原理及构造——发电机的励磁系统 众所周知, 同步发电机要用直流电流励磁。 在以往的他励式同步发电机中, 其直流电流 是有附设的直流励磁机供给。 直流励磁机是一种带机械换向器的旋转电枢式交流发电机。 其 多相闭合电枢绕组切割定子磁场产生了多相交流电, 由于机械换向器和电刷组成的整流系统 的整流作用, 在电刷上获得了直流电, 再通过另一套电刷, 滑块系统将获得的直流输送到同 步发电机的转子, 励磁绕组去励磁, 因此直流励磁机的换向器原则上是一个整流器, 显然可 以用一组硅二节管取代, 而功率半导体器件的发展提供了这个条件。 将半导体元件与发电机 的轴固结在一起转动,则可取消换向器、滑块等滑动接触部分、利用二极管换成直流电流。 直流送给转子励磁、绕组励磁。这就是无刷系统。 下面我们以典型的几种不同发电机励磁系统,介绍它的工作原理。 一、相复励励磁原理 左图为常用的电抗移相相复励励磁系统线路
三相发电机原理
三相交流发电机原理模型 实际应用的都是三相交流发电机, 其定子铁芯的内圆均匀分布着 6个槽,嵌装着三个相互间隔 120 度的同样线圈,分别称之为 A相线圈、 B相线圈、 C相线圈。装上转子就组成了一台三相交流发电 机原理模型。 三相交流发电机原理 画面中的三相交流发电机采用星形接法,三个线圈的公共点引出线是中性线,每个线圈的引出 线是相线。 当转子匀速旋转时三个线圈顺序切割磁力线,都会感生交流电动势,其幅度与频率相同。由于 三个线圈相互间隔 120度,它们感应电势的相位也相差 120度。在画面上有每根相线的输出电势波形。 这个模型的转子只有两个极,所以感生的电压频率与转子每秒转速相同,是同步交流发电机, 当转速为每分钟 3000转(3000r/min )时,发出的三相交流电频率为 50赫兹(Hz),这种两极的同步 发电机广泛应用在燃煤电厂、燃气轮机电厂与核电厂,这些电厂使用转速为 3000
(等离子态,电浆,英文:Plasma)大家常见的霓虹灯,在它点亮以后,灯管里的气体就被电离了,成为电子与离子的混合物——等离子体。极光,是我们看见的大自然里的等离子体。人们把大气圈分为对流层、平流层、中间层、电离层和散逸层,这电离层就是等离子体。电离层能反射短波无线电波,使它能传播到地球上很远的地方。由于存在电离出来的自由电子和带电离子,等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子态在宇宙中广泛存在,常被看作物质的第四态(也称之为超气态) 。等离子体由克鲁克斯在1879年发现,“Plasma"这个词,由朗廖尔在1928年最早采用。
等离子体是继物质3态(固态、液态、气态)后发现的第四态,由数量密度都近似的正、负离子组成。
等离子体显示器的工作原理
等离子体显示器的工作原理与一般日光灯原理相似,它在显示平面上安装数以十万计的等离子管作为发光体(象素)。每个发光管有两个玻璃电极、内部充满氦、氖等惰性气体,其中一个玻璃电极上涂有三原色荧光粉。当两个电极间加上高电压时,引发惰性气体放电,产生等离子体。等离子产生的紫外线激发涂有荧光粉的电极而发出不同分量的由三原色混合的可见光。每个等离子体发光管就是我们所说的等离子体显示器的像素,我们看到的画面就是由这些等离子体发光管形成的"光点"汇集而成的。等离子体技术同其它显示方式相比存在明显的差别,在结构和组成方面领先一步。
当电离过程频繁发生,使电子和离子的浓度达到一定的数值时,物质的状态也就起了根本的变化,它的性质也变得与气体完全不同。为区别于固体、液体和气体这三种状态,我们称物质的这种状态为物质的第四态,又起名叫等离子态。
等离子态下的物质具有类似于气态的性质,比如良好的流动性和扩散性。但是,由于等离子体的基本组成粒子是离子和电子,因此它也具有许多区别于气态的性质,比如良好的导电性、导热性。特别的,根据科学计算,等离子体的比热容与温度成正比,高温下等离子体的比热容往往是气体的数百倍。