选择特殊符号
选择搜索类型
请输入搜索
多种污染源作用下,我国浅层地下水污染严重且污染速度快。2011年,全国200个城市地下水质监测中,“较差—极差”水质比例55%,并且与2010年比15.2%的监测点水质在变差。
根据国土资源部十年的调查,197万平方公里的平原区,浅层地下水已不能饮用的面积达六成。地下水形势已刻不容缓。按环保部等部门制定的规划,到2020年,对典型地下水污染源实现全面监控。
2000年-2002年国土资源部进行了全国地下水资源评价,按照《地下水质量标准》,37%已是不能饮用的类、类水。
2011年,全国共200个城市开展了地下水质监测,其中“较差—极差”水质监测点比例为55%。与2010年相比,15.2%的监测点水质在变差。
根据2000年-2002年国土资源部的全国地下水资源评价,全国195个城市监测结果表明,97%的城市地下水受到不同程度污染,40%的城市污染趋势加重;北方17个省会城市中16个污染趋势加重,南方14个省会城市中3个污染趋势加重。
如前所述,地下水流系统的空间上的立体性,是地下水与地表水之间存在的主要差异之一。而地下水垂向的层次结构,则是地下水空间立体性的具体表征。典型水文地质条件下,地下水垂向层次结构的基本模式。自地表面起至地下某一深度出现不透水基岩为止,可区分为包气带和饱和水带两大部分。其中包气带又可进一步区分为土壤水带、中间过渡带及毛细水带等3个亚带;饱和水带则可区分为潜水带和承压水带两个亚带。从贮水形式来看,与包气带相对应的是存在结合水(包括吸湿水和薄膜水)和毛管水;与饱和水带相对应的是重力水(包括潜水和承压水)。以上是地下水层次结构的基本模式,在具体的水文地质条件下,各地区地下水的实际层次结构不尽一致。有的层次可能充分发展,有的则不发育。如在严重干旱的沙漠地区,包气带很厚,饱和水带深埋在地下,甚至基本不存在;反之,在多雨的湿润地区,尤其是在地下水排泄不畅的低洼易涝地带,包气带往往很薄,甚至地下潜水面出露地表,所以地下水层次结构亦不明显。至于象承压水带的存在,要求有特定的贮水构造和承压条件。而这种构造和承压条件并非处处都具备,所以承压水的分布受到很大的限制。但是上述地下水层次结构在地区上的差异性,并不否定地下水垂向层次结构的总体规律性。这一层次结构对于人们认识和把握地下水性质具有重要意义,并成为按埋藏条件进行地下水分类的基本依据。
地下水在垂向上的层次结构,还表现为在不同层次的地下水所受到的作用力亦存在明显的差别,形成不同的力学性质。如包气带中的吸湿水和薄膜水,均受分子吸力的作用而结合在岩土颗粒的表面。通常,岩土颗粒愈细小,其颗粒的比表面积愈大,分子吸附力亦愈大,吸湿水和薄膜水的含量便愈多。其中吸湿水又称强结合水,水分子与岩土颗粒表面之间的分子吸引力可达到几千甚至上万个大气压,因此不受重力的影响,不能自由移动,密度大于1,不溶解盐类,无导电性,也不能被植物根系所吸收。 薄膜水 又称弱结合水,它们受分子力的作用,但薄膜水与岩土颗粒之间的吸附力要比吸湿水弱得多,并随着薄膜的加厚,分子力的作用不断减弱,直至向自由水过渡。所以薄膜水的性质亦介于自由水和吸湿水之间,能溶解盐类,但溶解力低。薄膜水还可以由薄膜厚的颗粒表面向薄膜水层薄的颗粒表面移动,直到两者薄膜厚度相当时为止。而且其外层的水可被植物根系所吸收。当外力大于结合水本身的抗剪强度(指能抵抗剪应力破坏的极限能力)时,薄膜水不仅能运动,并可传递静水压力。
毛管水 当岩土中的空隙小于1毫米,空隙之间彼此连通,就象毛细管一样,当这些细小空隙贮存液态水时,就形成毛管水。如果毛管水是从地下水面上升上来的,称为毛管上升水;如果与地下水面没有关系,水源来自地面渗入而形成的毛管水,称为悬着毛管水。毛管水受重力和负的静水压力的作用,其水分是连续的,并可以把饱和水带与包气带联起来。毛管水可以传递静水压力,并能被植物根系所吸收。
重力水 当含水层中空隙被水充满时,地下水分将在重力作用下在岩土孔隙中发生渗透移动,形成渗透重力水。饱和水带中的地下水正是在重力作用下由高处向低处运动,并传递静水压力。
综上所述,地下水在垂向上不仅形成结合水、毛细水与重力水等不同的层次结构,而且各层次上所受到的作用力亦存在差异,形成垂向力学结构。
地下水体系作用势
所谓“势”是指单位质量的水从位势为零的点,移到另一点所需的功,它是衡量地下水能量的指标。根据理查兹(Richards)的测定,发现势能(Φ)是随距离(L)呈递减趋势,并证明势能梯度(-dΦ/dL)是地下水在岩土中运动的驱动力。地下水总是由势能较高的部位向势能较低的方向移动。
地下水体系的作用势根据其力源性质,可分为重力势、静水压势、渗透压势、吸附势等分势,这些分势的组合称为总水势。
1.重力势(Φg)指将单位质量的水体,从重力势零的某一基准面移至重力场中某给定位置所需的能量,并定义为Φg=Z,式中Z为地下水位置高度。具体计算时,一般均以地下水位的高度作为比照的标准,并将该位置的重力势视为零,则地下水位以上的重力势为正值,地下水面以下的重力势为负值。
2.静水压势(Φp)连续水层对它层下的水所产生的静水压力,由此引起的作用势称静水压势,由于静水压势是相对于大气压而定义的,所以处于平衡状态下地下水自由水面处静水压力为零,位于地下水面以下的水则处于高于大气压的条件下,承载了静水压力,其压力的大小随水的深度而增加,以单位质量的能量来表达,即为正的静水压势,反之,位于地下水面以上非饱和带中地下水则处于低于大气压的状态条件下。由于非饱和带中有闭蓄气体的存在,以及吸附力和毛管力的对水分的吸附作用,从而降低了地下水的能量水平,产生了负压效应,称为负的静水压势,又称基模势。
3.渗透压势(Φ0)又称溶质势,它是由于可溶性物质在溶于水形成离子时,因水化作用将其周围的水分子吸引并作走向排列,并部分地抑制了岩土中水分子的自由活动能力,这种由溶质产生的势能称为溶质势,其势值的大小恰与溶液的渗透压相等,但两者的作用方向正好相反,显然渗透压势为负值。
4.吸附势(Φa)岩土作为吸水介质,所以能够吸收和保持水分,主要是由吸附力的作用,水分被岩土介质吸附后,其自由活动的能力相应减弱,如将不受介质影响的自由水势作为零,则由介质所吸附的水分,其势值必然为负值,这种由介质吸附而产生的势值称为吸附势。或介质势。
5.总水势 总水势就是上述分势的组合,即Φ=Φg+Φp+Φ0+Φa,但处于不同水带的地下水其作用势并不相等。
地下水虽然埋藏于地下,难以用肉眼观察,但它象地表上河流湖泊一样,存在集水区域,在同一集水区域内的地下水流,构成相对独立的地下水流系统。
基本特征
地下水流系统的基本特征
在一定的水文地质条件下,汇集于某一排泄区的全部水流,自成一个相对独立的地下水流系统,又称地下水流动系。处于同一水流系统的地下水,往往具有相同的补给来源,相互之间存在密切的水力联系,形成相对统一的整体;而属于不同地下水流系统的地下水,则指向不同的排泄区,相互之间没有或只有极微弱的水力联系。 此外,与地表水系相比较,地下水流系统具有如下的特征:
1.空间上的立体性 地表上的江河水系基本上呈平面状态展布;而地下水流系统往往自地表面起可直指地下几百上千米深处,形成空间立体分布,并自上到下呈现多层次的结构,这是地下水流系统与地表水系的明显区别之一。2.流线组合的复杂性和不稳定性 地表上的江河水系,一般均由一条主流和若干等级的支流组合而成有规律的河网系统。而地下水流系统则是由众多的流线组合而成的复杂的动态系统,在系统内部不仅难以区别主流和支流,而且具有多变性和不稳定性。这种不稳定性,可以表现为受气候和补给条件的影响呈现周期性变化;亦可因为开采和人为排泄,促使地下水流系统发生剧烈变化,甚至在不同水流系统之间造成地下水劫夺现象。
3.流动方向上的下降与上升的并存性 在重力作用下,地表江河水流总是自高处流向低处;然而地下水流方向在补给区表现为下降,但在排泄区则往往表现为上升,有的甚至形成喷泉。
除上述特点外,地下水流系统涉及的区域范围一般比较小,不可能象地表江河那样组合成面积广达几十万乃至上百万平方公里的大流域系统。根据托思的研究,在一块面积不大的地区,由于受局部复合地形的控制,可形成多级地下水流系统,不同等级的水流系统,它们的补给区和排泄区在地面上交替分布。
集水区域
地下水域就是地下水流系统的集水区域。它与地表水的流域亦存在明显区别,地表水的流动主要受地形控制,其流域范围以地形分水岭为界,主要表现为平面形态;而地下水域则要受岩性地质构造控制,并以地下的隔水边界及水流系统之间的分水界面为界,往往涉及很大深度,表现为立体的集水空间。如以人类历史时期来衡量,地表水流域范围很少变动或变动极其缓慢,而地下水域范围的变化则要快速得多,尤其是在大量开采地下水或人工大规模排水的条件下,往往引起地下水流系统发生劫夺,促使地下水域范围产生剧变。
通常,每一个地下水域在地表上均存在相应的补给区与排泄区,其中补给区由于地表水不断地渗入地下,地面常呈现干旱缺水状态;而在排泄区则由于地下水的流出,增加了地面上的水量,因而呈现相对湿润的状态。如果地下水在排泄区以泉的形式排泄,则可称这个地下水域为泉域。
进入地下水的污染物有来自人类活动的,有来自自然过程的。1.生活污水和生活垃圾会造成地下水的总矿化度、总硬度、硝酸盐和氯化物含量的升高,有时也会造成病原体污染。2.工业废水和工业废物可使地下水中有机和无...
看你是检测那个部位的水,如果是某一承压含水层,那你的井要能打进含水层内部,如果是测非拘限含水层,及普通地下水,那你只要打井能出水就行。
环保局或者第三方质检机构,环保局的主要任务是监督处理,检测技术也有,但是你找第三方质检机构拿到相应样本的真实结果,找环保局也可!!!
地下水与人类的关系十分密切,井水和泉水是我们日常使用最多的地下水。不过,地下水也会造成一些危害,如地下水过多,会引起铁路、公路塌陷,淹没矿区坑道,形成沼泽地等。同时,需要注意的是:地下水有一个总体平衡问题,不能盲目和过度开发,否则容易形成地下空洞、地层下陷等问题。
赋存在地下岩土空隙中的水。含水岩土分为两个带,上部是包气带 ,即非饱和带 ,在这里,除水以外,还有
气体。下部为饱水带,即饱和带。饱水带岩土中的空隙充满水。狭义的地下水是指饱水带中的水。地下水可开发利用,作为居民生活用水、工业用水和农田灌溉用水的水源。地下水具有给水量稳定、污染少的优点。含有特殊化学成分或水温较高的地下水,还可用作医疗、热源、饮料和提取有用元素的原料。在矿坑和隧道掘进中,可能发生大量涌水,给工程造成危害。在地下水位较浅的平原、盆地中,潜水蒸发可能引起土壤盐渍化;在地下水位高,土壤长期过湿,地表滞水地段,可能产生沼泽化,给农作物造成危害。地下水中分布最广的是钾、钠、镁、钙、氯、硫酸根和碳酸氢根7 种离子。地下水中各种离子、分子和化合物的总量称总矿化度 ,总矿化度小于1克/升的 ,称淡水,1~3克/升的 ,称微水,3 ~ 10克/升的,称咸水 ,10~50克/升的,称盐水,大于 50 克/升的,称卤水。地下水中钙、镁、铁、锰、锶、铝等溶解盐类的含量称硬度,含量高的硬度大,反之硬度小。
绝大多数地下水的运动属层流运动。在宽大的空隙中,如水流速度高,则易呈紊流运动。地下水主要有降水入渗、灌溉水入渗、地表水入渗补给,越流补给和人工补给。在一定条件下,还有侧向补给。地下水的排泄主要有泉、潜水蒸发、向地表水体排泄、越流排泄和人工排泄。泉是地下水天然排泄的主要方式。
一类水质:水质良好。地下水只需消毒处理,地表水经简易净化处理(如过滤)、消毒后即可供生活饮用者。
二类水质:水质受轻度污染。经常规净化处理(如絮凝、沉淀、过滤、消毒等),其水质即可供生活饮用者。
三类水质:适用于集中式生活饮用水源地二级保护区、一般鱼类保护区及游泳区。
四类水质:适用于一般工业保护区及人体非直接接触的娱乐用水区。
五类水质:适用于农业用水区及一般景观要求水域。超过五类水质标准的水体基本上已无使用功能
地下水由于埋藏于地下岩土的空隙之中可以流动的水体,因而其分布、运动和水的性质,要受到岩土的特性以及贮存它的空间特性的深刻影响。与地表水系统相比,地下水系统显得更为复杂多样,并表现出立体结构的特点。
含水介质、含水层和隔水层
自然界的岩石、土壤均是多孔介质,在它们的固体骨架间存在着形状不一、大小不等的孔隙、裂隙或溶隙,其中有的含水,有的不含水,有的虽然含水却难以透水。通常把既能透水,又饱含水的多孔介质称为含水介质,这是地下水存在的首要条件。 所谓含水层是指贮存有地下水,并在自然状态或人为条件下,能够流出地下水来的岩体。由于这类含水的岩体大多呈层状、故名含水层,如砂层、砂砾石层等。亦有的含水岩体呈带状、脉状甚至是块状等复杂状态分布,对于这样的含水岩体可称为含水带、含水体或称为含水岩组。
对于那些虽然含水,但几乎不透水或透水能力很弱的岩体,称为隔水层,如质地致密的火成岩、变质岩,以及孔隙细小的页岩和粘土层均可戌为良好的隔水层。实际上,含水层与隔水层之间并无一条截然的界线,它们的划分是相对的,并在一定的条件下可以互相转化。如饱含结合水的粘土层,在寻常条件下,不能透水与给水,成为良好的隔水层;但在较大的水头作用下,由于部分结合水发生运动,粘土层就可以由隔水层转化为含水层。
含水介质的空隙性与水理性
1.含水介质的空隙性 含水介质的空隐性是地下水存在的先决条件之一。空隙的多少、大小、均匀程度及其连通情况,直接决定了地下水的埋藏、分布和运动特性。通常,将松散沉积物颗粒之间的空隙称为孔隙,坚硬岩石因破裂产生的空隙称裂隙,可溶性岩石中的空隙称溶隙(包括巨大的溶穴,溶洞等)。
1)孔隙率(n)又称孔隙度,它是反映含水介质特性的重要指标,以孔隙体积(Vn)与包括孔隙在内的岩土体积(V)之比值来表示,即n = Vn/V×100%。孔隙率的大小,取决于岩土颗粒本身的大小,颗粒之间的排列形式、分选程度以及颗粒的形状和胶结的状况等。必须指出,孔隙率只有孔隙数量多少的概念,并不说明孔隙本身的大小(即孔隙率大并不表示孔隙也大)。孔隙的大小与岩土颗粒粗细有关,通常是颗粒粗则孔隙大,颗粒细则孔隙小。但因细颗粒岩土表面积增大,因而孔隙率反而增大,如粘土孔隙率达到45—55%;而砾石的平均孔隙率只有27%。
2)裂隙率(KT)裂隙率即裂隙体积(VT)与包括裂隙在内岩石体积(V)之比值:KT = VT/V×100%。与孔隙相比裂隙的分布具有明显的不均匀性,因此,即使是同一种岩石,有的部位的裂隙率KT可能达到百分之几十,有的部位KT值可能小于1%。
3)岩溶率(KK)溶隙的多少用岩溶率表示,即溶隙的体积(Vk)与包括溶隙在内的岩石体积(V)之比值:K k = Vk/V×100%。溶隙与裂隙相比较,在形状、大小等方面显得更加千变万化,小的溶孔直径只几毫米,大的溶洞可达几百米,有的形成地下暗河延伸数千米。因此岩溶率在空间上极不均匀。
综上所述,虽然裂隙率(KT)、岩溶率(Kk)与孔隙率(n)的定义相似,在数量上均说明岩土空隙空间所占的比例。但实际意义却颇有区别,其中孔隙率具有较好的代表性,可适用于相当大的范围;而裂隙率囿于裂隙分布的不均匀性,适用范围受到极大限制;对于岩溶率(Kk)来说,即使是平均值也不能完全反映实际情况,所以局限性更大。
2.含水介质的水理性质 岩土的空隙,虽然为地下水提供了存在的空间,但是水能否自由的进出这些空间,以及岩土保持水的能力,却与岩土表面控制水分活动的条件、性质有很大的关系。这些与水分的贮容、运移有关的岩石性质,称为含水介质的水理性质,包括岩土的容水性、持水性、给水性、贮水性、透水性及毛细性等。
1)容水性指在常压下岩土空隙能够容纳一定水量的性能,以容水度来衡量。容水度(Wn)定义为岩土容纳水的最大体积Vn与岩土总体积V之比,即Wn=Vn/V×100%。由定义可知,容水度Wn值的大小取决于岩土空隙的多少和水在空隙中充填的程度,如全部空隙被水充满,则容水度在数值上等于孔隙度;对于具有膨胀性的粘土,充水后其体积会增大,所以容水度可以大于孔隙度。
2)持水性饱水岩土在重力作用下排水后,依靠分子力和毛管力仍然保持一定水分的能力称持水性。持水性在数量上用持水度表示。持水度Wr定义为饱水岩土经重力排水后所保持水的体积Vr和岩土总体积V之比。即Wr=Vr/V×100%,其值大小取决于岩土颗粒表面对水分子的吸附能力。在松散沉积物中,颗粒愈细,空隙直径愈小,则同体积内的比表面积愈大,Wr,愈大。
3)给水性 指饱水岩土在重力作用下能自由排出水的性能,其值用给水度(μ)来表示。给水度定义为饱水岩土在重力作用下,能自由排出水的体积Vg和岩土总体积V之比,即μ=Vg/V×100%。
由上述3个定义可知:岩土持水度和给水度之和等于容水度(或孔隙度),即Wn=Wr+μ或n = Wr+μ。式中n为孔隙度。
4)透水性 指在一定条件下,岩土允许水通过的性能。透水性能一般用渗透系数K值来表示。其值大小首先与岩土空隙的直径大小和连通性有关,其次才和空隙的多少有关。如粘土的孔隙度很大,但孔隙直径很小,水在这些微孔中运动时,不仅由于水与孔壁的摩阻力大而难以通过,而且还由于粘土颗粒表面吸附形成一层结合水膜,这种水膜几乎占满了整个孔隙,使水更难通过。透水层与隔水层虽然没有严格的界限,不过常常将渗透系数K值小于0.001米/日的岩土,列入隔水层,大于或等于此值的岩土属透水层。
5)贮水性 上述岩土的容水性和给水性,对于埋藏不深、厚度不大的潜水(无压水)来说是适合的,但对于埋藏较深的承压水层来说,往往存在明显的误差。主要原因是在高压条件下释放出来的水量,与承压含水介质所具有的弹性释放性能以及来自承压水自身的弹性膨胀性有关。通常,埋藏愈深,承压愈大则误差愈大。因而需要引入贮水性概念。承压含水介质的贮水性能可用贮水系数或释水系数表示,其定义为:当水头变化为一个单位时,从单位面积含水介质柱体中释放出来的水体积,称为释水系数(s),它是一个无量纲的参数。大部分承压含水介质的s值大约从10-5变化到10-3。
蓄水构造
所谓蓄水构造,是指由透水岩层与隔水层相互结合而构成的能够富集和贮存地下水的地质构造体。一个蓄水构造体需具备以下3个基本条件,第一,要有透水的岩层或岩体所构成的蓄水空间;第二,有相对的隔水岩层或岩体构成的隔水边界;第三,具有透水边界,补给水源和排泄出路。 不同的蓄水构造,对含水层的埋藏及地下水的补给水量、水质均有很大的影响。尤其在坚硬岩层分布区,首先要查明蓄水构造,才能找到比较理想的地下水垂直分布结构源。这类蓄水构造主要有:单斜蓄水构造、背斜蓄水构造、向斜蓄水构造、断裂型蓄水构造、岩溶型蓄水构造等。在松散沉积物广泛分布的河谷、山前平原地带,有人根据沉积物的成因类型,空间分布及水源条件,区分为山前冲洪积型蓄水构造、河谷冲积型蓄水构造、湖盆沉积型蓄水构造等。
地下水作为地球上重要的水体,
与人类社会有着密切的关系。地下水的贮存有如在地下形成一个巨大的水库,以其稳定的供水条件、良好的水质,而成为农业灌溉、工矿企业以及城市生活用水的重要水源,成为人类社会必不可少的重要水资源,尤其是在地表缺水的干旱、半干旱地区,地下水常常成为当地的主要供水水源。据不完全统计,70年代以色列国75%以上的用水依靠地下水供给,德国的许多城市供水,亦主要依靠地下水;法国的地下水开采量,要占到全国总用水量1/3左右;像美国,日本等地表水资源比较丰富的国家,地下水亦要占到全国总用水量的20%左右。中国地下水的开采利用量约占全国总用水量的10—15%,其中北方各省区由于地表水资源不足,地下水开采利用量大。根据统计,1979年黄河流域平原区的浅层地下水利用率达48.6%,海、滦河流域更高达87.4%;1988年全国270多万眼机井的实际抽水量为529.2亿立方米,机井的开采能力则超过800亿立方米。
问题的另一面,由于过量的开采和不合理的利用地下水,常常造成地下水位严重下降,形成大面积的地下水下降漏斗,在地下水用量集中的城市地区,还会引起地面发生沉降。此外工业废水与生活污水的大量入渗,常常严重地污染地下水源,危及地下水资源。因而系统地研究地下水的形成和类型、地下水的运动以及与地表水、大气水之间的相互转换补给关系,具有重要意义。
包气带水指潜水面以上包气带中的水,这里有吸着水、薄膜水、毛管水、气态水和暂时存在的重力水。包气带中局部隔水层之上季节性地存在的水称上层滞水。
潜水是指存在于地表以下第一个稳定隔水层上面、具有自由水面的重力水。它主要由降水和地表水入渗补给。 承压水是充满于上下两个隔水层之间的含水层中的水。它承受压力,当上覆的隔水层被凿穿时,水能从钻孔上升或喷出。按含水空隙的类型,地下水又被分为孔隙水、裂隙水和岩溶水。孔隙水是存在于岩土孔隙中的地下水,如松散的砂层、砾石层和砂岩层中的地下水。裂隙水是存在于坚硬岩石和某些粘土层裂隙中的水。岩溶水又称喀斯特水,指存在于可溶岩石(如石灰岩、白云岩等)的洞隙中的地下水。
地下水是一个庞大的家庭。据估算,全世界的地下水总量多达1.5亿立方公里,几乎占地球总水量的十分之一,比整个大西洋的水量还要多!
根据地下埋藏条件的不同,地下水可分为上层滞水、潜水和承压水三大类。
上层滞水是由于局部的隔水作用,使下渗的大气降水停留在浅层的岩石裂缝或沉积层中所形成的蓄水体。
潜水是埋藏于地表以下第一个稳定隔水层上的地下水,通常所见到的地下水多半是潜水。当地下水流出地面时就形成泉。
承压水(自流水)是埋藏较深的、赋存于两个隔水层之间的地下水。这种地下水往往具有较大的水压力,特别是当上下两个隔水层呈倾斜状时,隔层中的水体要承受更大的水压力。当井或钻孔穿过上层顶板时,强大的压力就会使水体喷涌而出,形成自流水。
2013年6月,环保部公布2012年环境公报,六成地级以上城市空气质量不达标,新标准纳入PM2.5达标率降低。对于2012年全国环境质量状况,环保部表示总体保持平稳,但形势依然严峻:超过30%的河流和超过50%的地下水不达标;空气质量方面,325个地级城市中,有59.1%的城市不符合新的空气质量标准,113个环保重点城市的不达标率更是达到76.1%。
PM2.5相关指标下降
公报称,我国污染物总量排放均有所下降。环保部强制要求减排的四项污染物,和废水相关的化学需氧量和氨氮,均较去年有所减少,和废气相关二氧化硫和氮氧化物,也比上一年降低。
在2011年,和PM2.5关系密切的氮氧化物排放总量当年有所上升,环保部曾解释这与该指标刚刚增加,尚未达到减排节点有关。去年,全国氮氧化物的排放量也开始全面下降。
但是,排放的废水废气减少,不代表环境质量改善。根据《公报》,2012年,全国325个地级市及以上城市,如果用新的空气质量标准衡量,达标城市比例仅40.9%,113个环保重点城市的达标率更是只有23.9%。
农村饮用水源受污染
对于水环境,环保部称“质量不容乐观”,针对全国798个村庄的农村环境质量试点监测结果表明,农村饮用水源和地表水受到不同程度污染。
此外,环保部认为,农村环境问题日益显现,突出表现为工矿污染压力加大,生活污染局部加剧,畜禽养殖污染严重等。
2012年,环保部批复了240个项目的建设项目环境影响评价,涉及总投资近1.4万亿元,其中基础设施和民生工程有79个,约占总投资的一半,有24个项目被退回环评,不予审批或暂缓审批,涉及总投资1000多亿元。
2013年世界环境日中国主题为“同呼吸 共奋斗”,重点关注以防治PM2.5为重点的大气污染防治工作。
水环境
在198个城市4929个地下水监测点位中,优良-良好-较好水质的监测点比例为42.7%,较差-极差水质的监测点比例为57.3%。农村地区的水环境问题更为严重,试点村庄饮用水源地的水质达标率仅77.2%,地下水饮用水源地水质达标率仅70.3%。地表水达标率只有64.7%。
点评:人民大学环境学院院长马中表示,水污染与污水排放量过大有关,虽然目前国家对废水的化学需氧量和氨氮进行了控制,但总量控制目标依然远远低于环境承载能力,“每年降百分之几的远远不够”。
中国地下水污染概况
中国地下水污染概况 THE SURVEY OF CHINESE GROUND WATER POLLUTION 胡俊松 08822016 南京大学金陵学院 环境科学 摘要 :地下水资源是我国重要的水资源,然而由于人们不合理的 开发利用和人为的污染, 使得地下水资源的质量不断下降。 地下水污 染正日益受到关注, 如生活和工业污水入渗, 过度开采等都回造成地 下水的污染。我们只有认清地下水的污染原因以及方式, 才能找到根 本方法解决地下水污染的问题。 关键词 : 地下水( ground water ) 污染 (pollution) 原因 (reason) 概况 (survey) 地下水资源是重要的自然资源 ,在维持生态平衡 ,保障城乡居民生活 , 维持经济持续发展中发挥了重要的作用。 地下水资源不仅储存量大 ,还具 有水质好分布广泛,便于就地开采利用等优点。 我国地下水资源的概
地下水污染场地污染的控制与修复
地下水污染场地污染的控制与修复 赵勇胜 吉林大学 环境与资源学院 ,长春 130026 摘要 :我国存在大量的地下水污染场地 ,给地下水资源的使用带来了严重威胁 。将地下水污染场地划 分为 4 大类 ,15 个亚类 ,为制定不同地下水污染场地的管理 、控制和修复规定提供了依据 ;对地下水污染防 治规划的内容和方法技术进行了论述 。提出了建立地下水污染的预警系统 ,为污染的预防奠定基础 ;介绍 了地下水污染的控制与修复技术 ,并对地下水污染防控和治理的基本原则进行了探讨 。 关键词 :地下水污染场地类型 ;地下水污染防治规划 ;地下水污染预警系统 ;污染控制 ;修复 中图分类号 :X52 文献标识码 :A 文章编号 :1671 5888 (2007 ) 02 0303 08 收稿日期 :2006 11 20 基金项目 :国家自然科学基金项目 ( 50478006 ) ;国家
关于地下水年代测量存在以下问题:
①对地下水年代的真正内涵不清楚;
②将地下水年代测量简单理解为数据获取;
③认为地下水年代不可信。
内 容 提 要
本书重点介绍浅层地下水的消耗、补给、更新、排泄等循环过程;天然状况或人类活
动条件下地下水的运动规律和计算方法;地下水与环境的关系以及地下水调控等方面的
内容。全书分五章,内容包括:地下水的形成及其特征;地下水运动的基本方程、水井开
采及河渠影响条件下地下水的计算以及水文地质参数的测定方法;地下水文要素和地下
水资源评价的多年均衡法;地下水水质与环境;地下水水、盐动态、监测以及地下水调控
原理。
本书是作者在参阅国内外大量有关文献资料和总结多年从事地下水开发利用、地下
水资源评价、地下水非稳定流计算及溶质运移理论等方面教学和研究成果的基础上,按照
地下水循环、地下水控制以及地下水与环境这一体系编写的。本书可作为农田水利工程专
业的选修课教材,也可作供水文地质、水文与水资源、环境工程等专业的学生以及有关专
业科研和工程技术人员参考。
侧向补给量是指计算区以外的地下水通过水平运动方式补给计算区的水量。在研究平原地区地下水资源时,应当计算来自山前的地下水补给量,即山前侧向补给量。如果研究对象是一个流域,应视流域是否闭合来确定有无侧向补给,闭合流域无侧向补给,流域不闭合时则有侧向补给。
修建灌溉工程以及对潜水采用地面、河渠、坑塘蓄水渗补,对承压水采用井、孔灌注等方式进行地下水人工补给等人类活动也会增加地下水的补给。利用河水灌溉农田的地区,一般灌溉水入渗在地下水总补给量中占很大比重,可分为两部分:一是渠系渗漏补给;二是田间渗漏补给。有的地区利用当地的水源(如抽取地下水)进行灌溉,灌溉水入渗后地下水得到的补给,称之为灌溉回渗,它是当地的水资源重复量。
我国西北、东北高寒地区每年积雪时间长,包气带和部分饱水带土层温度常处于零度以下,形成冻土,在土层冻结期几乎无入渗补给;至夏季才开始逐渐消融,其人渗补给地下水量的大小与积雪的厚度、包气带冻土厚度、化冻时间长短及气温高低等因素有关。有些高寒地区在融冻期的入渗补给系数相对较大,有时竟高达0.8以上。但在我国大小兴安岭北部、青藏高原、阿尔泰山、天山等地的多年冻土区,由于季节解冻范围仅限于地表以下4~5m深度内,再向下直至50~60m深度内则常年处于负温,形成天然的隔水介质,往往得不到直接的入渗补给。 2100433B