选择特殊符号
选择搜索类型
请输入搜索
1 绪论
1.1 引言
1.2 研究现状
1.3 本书技术体系
2 二氧化碳对煤低温氧化反应过程的影响
2.1 煤样对CO2气体的吸附特性实验
2.2 煤样吸附CO2后自燃特性对比实验
2.3 CO2对煤升温氧化反应过程的影响
2.4 本章小结
3 二氧化碳抑制煤氧化燃烧反应动力学研究
3.1 实验方法及分析仪器
3.2 煤升温氧化燃烧过程的特性
3.3 CO2抑制煤升温氧化反应动力学分析
3.4 本章小结
4 二氧化碳注入采空区惰化降温数值模拟
4.1 数学模型的建立
4.2 采空区松散煤岩体几何模拟模型及参数
4.3 数值模拟及结果分析
4.4 试验对比
4.5 本章小结
5 液态二氧化碳防灭火工艺流程模拟
5.1 CO2物理性质
5.2 气液两相系统的热力学性质
5.3 CO2气体输送方式选择
5.4 输送模型的建立
5.5 液态CO2气-液输送模拟及分析
5.6 液态CO2汽化输送模拟
5.7 本章小结
6 二氧化碳防治煤层自燃的应用工艺及装备
6.1 矿用液态CO2直接灌注装备及工艺
6.2 地面固定式液态CO2汽化防灭火系统
6.3 本章小结
7 二氧化碳防治煤层自燃的应用实例
7.1 潘一矿高瓦斯综采工作面封闭火区治理
7.2 杨柳矿高瓦斯综采工作面封闭火区治理
7.3 掘进巷道穿采空区煤自燃火灾治理
7.4 地面煤仓火区治理
7.5 中村钒矿采空区自燃火区治理
7.6 韩城小南沟矿井火灾事故灭火救援
7.7 本章小结
8 结论
8.1 主要结论
8.2 创新点
参考文献
《二氧化碳防治煤炭自燃理论与技术》共分八章,主要内容包括CO2对煤自燃氧化反应过程的影响实验,抑制煤氧化燃烧反应动力学过程分析;CO2注入采空区的惰化降温区域;液态CO2防灭火工艺流程模拟;CO2防治煤层自燃的应用工艺及装备;分析了CO2防治煤自燃应用的典型案例等。
《二氧化碳防治煤炭自燃理论与技术》可作为安全工程和消防工程等专业的研究学者阅读,也可作为煤矿企业从事煤矿安全生产、矿山应急救援的技术和管理人员的参考用书。
简单的说,二氧化碳起隔离空气保护焊接熔池,和一定程度参与焊接熔池冶金反应的作用!另外电压主要调节的是电弧的长度!电流主要调节的是送丝速度!至于你说的熔丝温度,讨论一下,焊丝从导电嘴深处的长度越长,因电...
优:二氧化碳可用于灭火,也可用于人工降雨,也可用于保鲜蔬菜,水果等。 劣:它是温室气体,会导致温室效应,会危害人类。 燃料燃烧后一般都会产生二氧化碳气体。
水玻璃是硅酸钠的俗称,二氧化碳与之反应式如下:Na2SiO3 + CO2 + H2O = H2SiO3↓ + Na2CO3,其实质为二氧化碳溶于水变成碳酸后与硅酸钠发生复分解反应,因碳酸酸性强于硅酸且...
低压二氧化碳电控系统
低压二氧化碳电控系统
《煤矿火灾防治理论与技术》介绍了:煤矿火灾的基本概念和基本知识,重点从煤矿火灾发生发展的规律、防治理论与技术角度出发,讲述煤矿自燃火灾的机理及常用的预测预报新方法和防灭火的新技术,并介绍了矿井火灾时期的火灾事故及处理,同时对外因火灾的防治方法进行了系统的讲述。
《煤矿火灾防治理论与技术》可作为安全技术工程及相关专业使用的教材,也可供大型煤矿职工培训、科研及工程技术人员参考用书。
2100433B
《矿井瓦斯防治理论与技术(第2版)》是由中国矿业大学出版社出版的。
煤自燃是煤氧化产热与向环境散热的矛盾发展的结果。因此,只要与煤自燃过程产热和热量向环境散热相关的因素都能影响煤的自然发火过程。可以将影响煤自燃的因素分为两个方面,即影响煤自燃的内在因素和外在因素。
(1)煤的变质程度。煤的变质过程伴随着煤分子结构的变化,碳化程度越高,煤体内含有的活性结构越少。所以煤的变质程度是煤自燃倾向性的决定性因素。然而煤是很复杂的固体化合物,影响煤自燃的因素义很多,所以同一变质程度的煤可能自燃,也可能不自燃。现场的统计表面.褐煤最易自燃,无烟煤最不易A燃,烟煤的煤化度和自燃倾向性低于无烟煤而高于褐煤。烟煤是自然界最重要、分布最广、储量最大、品种最多的煤种。根据煤化度的不同.我国将其划分为长焰煤、不黏煤、弱黏煤、气煤、肥煤、焦煤、瘦煤和贫煤等,这些煤种的自燃倾向性逐渐降低。
(2)煤岩成分。煤岩成分一般分为丝煤、暗煤、亮煤和镜煤四种。在不同的煤炭中,这四种成分的数量变化很大,通常煤体中大多数是暗煤和亮煤,除极少数的情况外,丝煤和镜煤仅仅是煤中的少量混杂物质。
不同的煤岩成分有着不同的氧化性。在低温下,丝煤吸氧最多,但是,随着温度的升高,镜煤吸附氧能力最强,其次是亮煤.暗煤最难于自燃。丝煤结构松散。吸氧量强。在常温条件下,丝煤吸附氧的数量较其他煤种要多1.5~2.0倍,50℃时为5倍。丝煤的着火温度低,仅为190~270℃。所以人们认为,在常温条件下,丝煤是自燃的导因,起着引火物的作用。
镜煤与亮煤脆性大,易破碎,而且灰分少,在其次生的裂隙中常常充填有黄铁矿,开采中易碎裂为微细的颗粒,细微状的煤粒或黄铁矿都有较高的自燃氧化特性,因此它的氧化接触面积大,着火温度低,故镜煤与亮煤在丝煤吸附氧化升温的促使诱导下很容易自燃。
(3)煤的含硫量。硫在煤中有三种存在形式:硫化铁即黄铁矿、有机硫以及硫酸盐。对煤自燃起主导作用的是黄铁矿一黄铁矿的比热小,它与煤吸附相同的氧量而温度的增值比煤大3倍。黄铁矿在低温氧化时产生硫酸铁和硫酸亚铁,体积增大,使煤体膨胀而变得松散,增大了氧化表面积,而且其分解产物比煤的吸氧性更强,能将吸附的氧转让给煤粒使之发生氧化"para" label-module="para">
(4)煤的粒度孔隙特性和破碎程度。完整的煤体一般不会发生自燃,一旦受压破裂,呈破碎状态存在,其自燃性能显著提高。这是因为破碎的煤炭不仅与氧接触的表面积增大,而且着火温度也明显降低。有人研究,当煤粒度小于1mm时氧化速率与粒径无关,并认为孔径大于10nm的孔在煤氧化中起重要作用,根据波兰的试验,当烟煤的粒度直径为1.5~2mm时,其着火点温度大多在330~360℃;粒度直径小于1mm以下时,着火点温度可能降低到190~220℃。因此,可以说,煤的自燃性随着其孔隙率、破碎度的增加而上升,这也是煤矿井下自燃多发生在粉煤及碎煤聚集的地方的原因。如采空区周围边缘地带,在垮塌的煤壁和受压破裂的煤柱等处均为自燃多发地。
(5)煤的瓦斯含量。瓦斯或者其他气体含量较高的煤,由于其内表面含有大量的吸附瓦斯,使煤与空气隔离,氧气不易与煤表面发生接触,也就不易与煤进行复合氧化,使煤炭自燃的准备期加长。当煤中残余瓦斯量大于5m³/t时,煤往往难以自燃。但是随着瓦斯的放散,煤与氧就更易结合。
(6)水分对煤自燃的影响。水分对煤炭自燃过程的影响有两个相互对立的过程。一方面,煤炭中的水分在初期阶段会因为蒸发作用而散失,因此,一部分热量就会以水分潜热的形式被水蒸气带走,这就会阻止煤体温度升高的趋势。另一方面,煤体也会从空气中吸收水分。这就是所谓的吸收热(有时也叫湿润热)会促使煤的温度升高。那么水分对煤的总的作用就取决于这两种过程谁占主导地位。
根据煤中水分赋存的特点,煤的水分分为内在水分和外在水分,煤的内在水分是吸附或凝聚在煤颗粒内部的毛细孔中的水分,煤的外在水分是附着在煤的裂隙和煤体表面上的水分。一般来说,煤的内在水分在100℃以上的温度才能完全蒸发到周嗣的空气中,煤的外在水分在常温状态下即能不断蒸发到周围空气中,在40~50℃温度下,经过一定时间,煤的外在水分即完全蒸发干。在煤的外在水分还没有全部蒸发之前,温度很难上升到100℃,因此,从这种情况看,煤的含水量对煤的氧化进程有影响,主要还是煤的外在水分。
煤炭自燃倾向性是煤的一种自然属性。实验证明,它取决于煤在常温下的氧化能力。是煤层发生自燃的基本条件。然而在生产中。一个煤层或矿井自然发火危险程度并不完全取决于煤的自燃倾向性,还受煤层的地质赋存、开拓、开采和通风条件的制约。
1、煤层地质赋存条件
据统计,80%的自燃火灾是发生在厚煤层开采中,鹤岗矿区统计86%的自燃火灾发生在5m以上的厚煤层中,厚煤层容易自然发火的原因,一是难以全部采用,遗留大量浮煤与残柱;二是采区回采时间长,大大超过了煤层的自然发火期;三是煤层易受压破裂而发生自燃。
开采急倾斜煤层比开采缓倾斜煤层易自燃。俄罗斯库兹涅茨矿区75%的自燃火灾发生在45°~90°倾角的煤层中。徐州大黄山煤矿煤层倾角南陡北缓,南翼局部倒转,自然发火次数南翼为北翼的一倍以上。急倾斜煤层易于发生自燃火灾的原因主要是采煤方法不正规、丢煤多、采后难以封闭。
综上所述,可以认为绝大多数厚煤层都应按自然发火危险煤层处理.急倾斜厚煤层尤应如此。
地质构造复杂的地区,包括断层、褶曲发育地带、岩浆入侵地带,自然发火频繁。这是由于煤层受张力、挤压,裂隙多,煤体破碎,吸氧条件好所造成。据四川芙蓉矿统计.巷道自燃火灾52%发生在断层附近。
煤层顶板坚硬,煤柱最易受压碎裂。坚硬顶板的采空区难以冒落充填密实.冒落后还会形成与相邻近的采I爰甚至地面连通的裂隙.漏风难以杜绝,为自然发火提供了条件,大同矿区的自然发火就具有这方面的特征。
2、开拓开采条件
用石门、岩巷开拓,少切割煤层,少留煤柱,自然发火的危险性就小。厚煤层开采岩巷进入采区.便于打钻注浆有利于实现预防性或灭火灌浆。
采煤方法对自然发火的影响主要表现在煤炭回采率的高低,回采时间的长短上。丢煤越多,丢失的浮煤越易集中,工作面的推进速度越慢,越易发生自燃。
3、通风条件
通风因素的影响主要表现在采空区、煤柱和煤壁裂隙漏风。采空区面积大,漏风量也大。在工作面的“两巷两线”(进风巷、回风巷、开切眼、停采线),过断层地带,煤层变薄跳面的地方有大量浮煤堆积,最易发生自燃。
决定漏风大小的因素有矿井、采区的通风系统,采区和工作面的推进方向,开采与控顶方法等。