选择特殊符号
选择搜索类型
请输入搜索
图1是《风力发电机叶片的融冰加热结构及其制作方法》的融冰加热结构图;
图2是图1的横截面图;
图3是图2中局部A的放大图;
图4是该叶片一种避雷装置的连接结构图(带连接螺栓);
图5是图4中局部B的放大图。
图中代号含义: 1:叶片壳体;2:温度传感器;3:碳晶电加热膜;4:双向玻璃纤维布;5:金属丝网;6:铜箔带;7:铜螺栓;8:温度传感器信号线;9:碳晶电加热膜电源线;10:加热控制器;11:碳晶电加热膜电极;12:抗剪切腹板;13:雷电流引线。
1.《风力发电机叶片的融冰加热结构及其制作方法》所述风力发电机叶片由壳体和位于壳体内的两块抗剪切腹板组合构成,所述壳体由迎流面壳体和背流面壳体对接构成空腹结构,两块抗剪切腹板在腹腔中纵向并列布置,它们的两个侧边分别与迎流面壳体、背流面壳体的内壁粘接;其特征在于,所述风力发电机叶片设有碳晶膜加热装置,该装置包括碳晶电热膜、温度传感器、加热控制器,所述碳晶电热膜铺覆在壳体前缘表面的覆冰区域,用于加热壳体前缘的覆冰区域;所述温度传感器布置在碳晶电热膜下,对应覆冰区域,用于检测壳体前缘覆冰区域的温度;所述加热控制器布置在风力发电机控制系统中,根据温度传感器检测到的壳体前缘覆冰区域的温度,调整碳晶电热膜的加热电功率,使壳体前缘覆冰区域的温度恒定在设定值,该设定值略大于冰的熔点,为0℃<t≤2℃;所述碳晶电热膜通过其电源线连接电源,所述温度传感器通过其信号线连接加热控制器,所述碳晶电热膜的电源线、温度传感器的信号线均敷设在叶片壳体的腹腔中,固定在抗剪切腹板上,从叶片根部引出;所述风力发电机叶片还设有避雷装置,该避雷装置包括金属丝网和雷电流引线,所述金属丝网包覆在叶片前缘壳体表面,对应覆冰区域,其与碳晶电热膜的结合面设有绝缘层;所述金属丝网具有钎焊的铜箔带,所述雷电流引线固定在抗剪切腹板上,它的一端与金属丝网的铜箔带钎焊连接,另一端从叶片根部引出接地。
2.权利要求1所述风力发电机叶片融冰加热结构的制作方法,包括步骤:
(1)在灌注叶片迎流面、背流面壳体之前,先把金属丝网、高密度双向纤维布、碳晶电热膜依序铺在模具内,对应覆冰区域,把温度传感器布置在碳晶电热膜上,并把金属丝网的雷电流引线、碳晶电热膜的电源线、温度传感器的信号线都钎焊好,其中,雷电流引线直接与金属丝网的铜箔带焊接;再铺叶片壳体纤维布及芯材;
(2)抽真空灌注树脂一起成型,将金属丝网、高密度双向纤维布、碳晶电热膜、温度传感器固化在叶片壳体内;
(3)在抗剪切腹板灌注成型后,把金属丝网的雷电流引线、碳晶电热膜的电源线、温度传感器的信号线固定在抗剪切腹板上;
(4)将迎流面壳体、背流面壳体、抗剪切腹板组装粘接,然后合模保温、保压,至树脂和粘接剂彻底固化后脱模,叶片成型;
(5)在叶片整个表面喷涂防风沙耐腐蚀的专用油漆。
3.该发明所述风力发电机叶片由壳体和位于壳体内的两块抗剪切腹板组合构成,所述壳体由迎流面壳体和背流面壳体对接构成空腹结构,两块抗剪切腹板在腹腔中纵向并列布置,它们的两个侧边分别与迎流面壳体、背流面壳体的内壁粘接;其特征在于,所述风力发电机叶片设有碳晶膜加热装置,该装置包括碳晶电热膜、温度传感器、加热控制器,所述碳晶电热膜铺覆在壳体前缘表面的覆冰区域,用于加热壳体前缘的覆冰区域;所述温度传感器布置在碳晶电热膜下,对应覆冰区域,用于检测壳体前缘覆冰区域的温度;所述加热控制器布置在风力发电机控制系统中,根据温度传感器检测到的壳体前缘覆冰区域的温度,调整碳晶电热膜的加热电功率,使壳体前缘覆冰区域的温度恒定在设定值,该设定值略大于冰的熔点,为0℃<t≤2℃;所述碳晶电热膜通过其电源线连接电源,所述温度传感器通过其信号线连接加热控制器,所述碳晶电热膜的电源线、温度传感器的信号线均敷设在叶片壳体的腹腔中,固定在抗剪切腹板上,从叶片根部引出;所述风力发电机叶片还设有避雷装置,该避雷装置包括金属丝网、雷电流引线和连接螺栓,所述金属丝网包覆在叶片前缘壳体表面,对应覆冰区域,其与碳晶电热膜的结合面设有绝缘层;所述金属丝网具有钎焊的铜箔带,铜箔带上有螺栓穿孔;所述雷电流引线固定在抗剪切腹板上,它的一端通过螺栓与金属丝网连接,由螺栓将雷电流引线、金属丝网锁紧,螺栓与铜箔带的结合部、螺栓与雷电流引线的结合部均钎焊连接;雷电流引线的另一端从叶片根部引出接地。
4.权利要求3所述风力发电机叶片融冰加热结构的制作方法,包括步骤:
(1)分别用模具灌注叶片迎流面壳体、背流面壳体、抗剪切腹板,再组装粘接,合模保温、保压,至粘接剂彻底固化后脱模,叶片成型;
(2)在壳体上钻好碳晶电加热膜电源线穿孔、温度传感器信号线穿孔、避雷装置的螺栓穿孔;
(3)在叶片壳体前缘覆冰区域安装温度传感器,并与其信号线钎焊连接;
(4)在叶片壳体前缘覆冰区域表面涂覆粘接剂,再将面积与覆冰区域表面相当的碳晶电加热膜铺覆上去,并与其电源线钎焊连接;
(5)在碳晶电加热膜表面涂覆粘接剂,再将面积与碳晶电加热膜相当的高密度双向玻璃纤维布铺覆上去;
(6)裁剪一块金属丝网,其面积应大于碳晶电加热膜,在金属丝网的一边钎焊铜箔带,在铜箔带上钻螺栓孔,将金属丝网铺覆在双向玻璃纤维布上面,其螺栓孔与叶片壳体上的螺栓孔对齐,将螺栓穿进螺栓孔,与雷电流引线连接,并将铜箔与螺栓钎焊连接、雷电流引线与螺栓钎焊连接;
(7)将碳晶电加热膜电源线、温度传感器信号线、雷电流引线固定在抗剪切腹板上,并从叶片根部引出;
(8)在金属丝网上铺覆低密度双向玻璃纤维布,将金属丝网覆盖,然后在叶片整个表面喷涂防风沙耐腐蚀的叶片专用油漆。
风电机组在寒冷气候环境下运行时,在冬季机组叶片表面通常会发生较为严重的覆冰,覆冰后叶片的气动外形发生明显变化,将严重影响叶片的气动效率,使机组的发电效率下降,覆冰后机组和叶片载荷的也会增加,当三支叶片载荷和质量矩互差达到一定程度时,会引发机组的振动,从而影响机组的安全稳定运行。通常为了机组安全运行,叶片覆冰严重时机组将停止运行,因此风电叶片结冰将导致严重的发电量损失。为了解决叶片表面覆冰的问题,2015年12月之前主要有以下几种方法:
1、叶片表面喷涂超疏水防结冰涂料,利用涂料的疏水特性使吸附在叶片表面的水分尽量少,从而减小覆冰层厚度,其缺点是不能彻底除冰。
2、热空气加热除冰,向叶片腹腔通入热空气循环加热,使叶片壳体温度升高,防止表面结冰。其缺点是热量浪费大,热空气管路敷设工艺难度大。
3、叶片表面铺覆碳纤维布加热除冰,碳纤维模量相对较高,铺覆后将在一定程度上影响叶片的结构刚度和频率。
用于加工叶片的材料有木头、金属、工程塑料、玻璃钢等。 所谓玻璃钢(glass fiber reinforced plastic,简称GFRP)就是环氧树脂、不饱和树脂等塑料渗入长度不同的玻璃纤维或碳纤...
大型风力发电机叶轮叶片采用的工艺目前主要有两种,开模手工铺层和闭模真空浸透。常用的是后者,首先把增强材料铺覆在涂覆硅胶的模具上,增强材料的外形和铺层数,根据设计,在先进的现代化工厂,采用专用的铺层机进...
//////具体取决于风力发电机的型号,一般来说 600-1000kw的风机 配20-30米的叶片 1.5左右的 &...
针对以上问题,该发明提出一种风力发电机叶片的融冰加热结构及其制作方法,既可避免结冰,又可保护叶片不受损伤。
《风力发电机叶片的融冰加热结构及其制作方法》所述风力发电机叶片由壳体和位于壳体内的两块抗剪切腹板组合构成,所述壳体由迎流面壳体和背流面壳体对接构成空腹结构,两块抗剪切腹板在腹腔中纵向并列布置,它们的两个侧边分别与迎流面壳体、背流面壳体的内壁粘接;其特征在于,所述风力发电机叶片设有碳晶膜加热装置,该装置包括碳晶电热膜、温度传感器、加热控制器,所述碳晶电热膜铺覆在壳体前缘表面的覆冰区域,用于加热壳体前缘的覆冰区域;所述温度传感器布置在碳晶电热膜下,对应覆冰区域,用于检测壳体前缘覆冰区域的温度;所述加热控制器布置在风力发电机控制系统中,根据温度传感器检测到的壳体前缘覆冰区域的温度,调整碳晶电热膜的加热电功率,使壳体前缘覆冰区域的温度恒定在设定值,该设定值略大于冰的熔点,通常为0℃<t≤2℃。
所述碳晶电热膜通过其电源线连接电源,所述温度传感器通过其信号线连接加热
控制器,所述碳晶电热膜的电源线、温度传感器的信号线均敷设在叶片壳体的腹腔中,固定在抗剪切腹板上,从叶片根部引出。
所述风力发电机叶片还设有避雷装置,该避雷装置包括金属丝网和雷电流引线,所述金属丝网包覆在叶片前缘壳体表面,对应覆冰区域,其与碳晶电热膜的结合面设有绝缘层;所述金属丝网具有钎焊的铜箔带,所述雷电流引线固定在抗剪切腹板上,它的一端与金属丝网的铜箔带钎焊连接,另一端从叶片根部引出接地。
所述风力发电机叶片还设有避雷装置,该避雷装置包括金属丝网、雷电流引线和连接螺栓,所述金属丝网包覆在叶片前缘壳体表面,对应覆冰区域,其与碳晶电热膜的结合面设有绝缘层;所述金属丝网具有钎焊的铜箔带,铜箔带上有螺栓穿孔;所述雷电流引线固定在抗剪切腹板上,它的一端通过螺栓与金属丝网连接,由螺栓将雷电流引线、金属丝网锁紧,螺栓与铜箔带的结合部、螺栓与雷电流引线的结合部均钎焊连接;雷电流引线的另一端从叶片根部引出接地。
所述金属丝网是铜丝网或铝丝网;所述螺栓是铜螺栓;所述绝缘层采用高密度双向玻璃纤维布增强树脂的玻璃钢绝缘层。
上述风力发电机叶片融冰加热结构的制作方法,可采用手工分步制作法或整体灌注法。
手工分步制作法包括如下步骤:
(1)分别用模具灌注叶片迎流面壳体、背流面壳体、抗剪切腹板,再组装粘接,合模保温、保压,至粘接剂彻底固化后脱模,叶片成型;
(2)在壳体上钻好碳晶电加热膜电源线穿孔、温度传感器信号线穿孔、避雷装置的螺栓穿孔;
(3)在叶片壳体前缘覆冰区域安装温度传感器,并与其信号线钎焊连接;
(4)在叶片壳体前缘覆冰区域表面涂覆粘接剂,再将面积与覆冰区域表面相当的碳晶电加热膜铺覆上去,并与其电源线钎焊连接;
(5)在碳晶电加热膜表面涂覆粘接剂,再将面积与碳晶电加热膜相当的高密度双向玻璃纤维布铺覆上去;
(6)裁剪一块金属丝网,其面积应大于碳晶电加热膜,在金属丝网的一边钎焊铜箔带,在铜箔带上钻螺栓孔,将金属丝网铺覆在双向玻璃纤维布上面,其螺栓孔与叶片壳体上的螺栓孔对齐,将螺栓穿进螺栓孔,与雷电流引线连接,并将铜箔与螺栓钎焊连接、雷电流引线与螺栓钎焊连接;
(7)将碳晶电加热膜电源线、温度传感器信号线、雷电流引线固定在抗剪切腹板上,并从叶片根部引出;
(8)在金属丝网上铺覆低密度双向玻璃纤维布,将金属丝网覆盖,然后在叶片整个表面喷涂防风沙耐腐蚀的叶片专用油漆。
整体灌注法包括如下步骤:
(1)在灌注叶片迎流面、背流面壳体之前,先把金属丝网、高密度双向纤维布、碳晶电热膜依序铺在模具内,对应覆冰区域,把温度传感器布置在碳晶电热膜上,并把金属丝网的雷电流引线、碳晶电热膜的电源线、温度传感器的信号线都钎焊好,其中,雷电流引线直接与金属丝网的铜箔带焊接;再铺叶片壳体纤维布及芯材;
(2)抽真空灌注树脂一起成型,将金属丝网、高密度双向纤维布、碳晶电热膜、温度传感器固化在叶片壳体内;
(3)在抗剪切腹板灌注成型后,把金属丝网的雷电流引线、碳晶电热膜的电源线、温度传感器的信号线固定在抗剪切腹板上;
(4)将迎流面壳体、被流面壳体、抗剪切腹板组装粘接,然后合模保温、保压,至树脂和粘接剂彻底固化后脱模,叶片成型;
(5)在叶片整个表面喷涂防风沙耐腐蚀的专用油漆。
《风力发电机叶片的融冰加热结构及其制作方法》通过在叶片覆冰区域设置碳晶电热膜,并将加热温度控制在0℃<t≤2℃,既有效地防止了叶片结冰,又节约能源,还可避免叶片前后缘因温差过大引起的变形,从而保证叶片的气动性能,延长叶片的使用寿命。通过设置避雷装置,使风力发电机免遭雷击,保障机组运行安全。
参见图1至图5,《风力发电机叶片的融冰加热结构及其制作方法》所述风力发电机叶片由壳体1和位于壳体内的两块抗剪切腹板12组合构成,所述壳体1由迎流面壳体和背流面壳体对接构成空腹结构,两块抗剪切腹板12在腹腔中纵向并列布置,它们分别与迎流面壳体、背流面壳体的内壁粘接;这是风力发电机叶片的基本结构。
该发明的特点,是在风力发电机叶片中增设碳晶膜加热装置,该装置包括碳晶电热膜3、温度传感器2、加热控制器10,所述碳晶电热膜3铺覆在壳体1的前缘表面覆冰区域,用于加热壳体前缘覆冰区域;所述温度传感器2布置在碳晶电热膜下,对应覆冰区域,用于检测壳体前缘覆冰区域的温度;所述加热控制器10布置在风力发电机控制系统中,根据温度传感器2检测到的壳体1前缘覆冰区域的温度,调整碳晶电热膜3的加热电功率,使壳体1前缘覆冰区域的温度恒定在设定值,该设定值略大于冰的熔点,通常为0℃<t≤2℃。 所述碳晶电热膜3通过其电源线9连接电源,所述温度传感器2通过其信号线8连接加热控制器10,所述碳晶电热膜3的电源线9、温度传感器2的信号线8均敷设在叶片壳体1的腹腔中,固定在抗剪切腹板12上,从叶片根部引出。
由于设置了碳晶膜加热装置,为防止叶片遭受雷击,该风力发电机叶片还设有避雷装置,该避雷装置包括金属丝网5和雷电流引线13,所述金属丝网5包覆在叶片前缘壳体表面,对应覆冰区域,其与碳晶电热膜3的结合面设有绝缘层,该绝缘层是高密度双向玻璃纤维布(800克/平方米)4作为夹心材料的玻璃钢绝缘层。所述金属丝网5具有钎焊的铜箔带6,所述雷电流引线13固定在抗剪切腹板12上,它的一端与金属丝网的铜箔带钎焊连接,另一端从叶片根部引出接地。该结构适合整体灌注工艺;若采用人工手糊工艺,则避雷装置如图4、图5所示,包括金属丝网5、雷电流引线13和连接螺栓7,所述金属丝网包覆在叶片前缘壳体表面,对应覆冰区域,其与碳晶电热膜3的结合面设有绝缘层,该绝缘层是高密度(800克/平方米)双向玻璃纤维布4作为夹心材料的玻璃钢绝缘层。所述金属丝网5具有钎焊的铜箔围带6,铜箔围带上有螺栓穿孔;所述雷电流引线固定在抗剪切腹板上,它的一端通过螺栓7与金属丝网5连接,由螺栓7将雷电流引线13、金属丝网5的铜箔围带6锁紧连接,螺栓7与铜箔围带6的结合部、螺栓7与雷电流引线的13结合部均钎焊连接;雷电流引线13的另一端从叶片根部引出接地。
所述金属丝网5采用铜丝网或铝丝网;所述螺栓最好用铜螺栓;所述绝缘层是高密度(800克/平方米)双向玻璃纤维布作为夹心材料的玻璃钢绝缘层。
实例一
整体灌注工艺包括如下步骤:
(1)在灌注叶片迎流面、背流面壳体之前,先把低密度双向玻璃纤维布、金属丝网5、高密度双向纤维布4、碳晶电热膜3依序铺在模具内,对应覆冰区域,把温度传感器2布置在碳晶电热膜3上,并把金属丝网5的雷电流引线13、碳晶电热膜3的电源线9、温度传感器2的信号线8都钎焊好,其中,碳晶电热膜的电源线9与碳晶电热膜的电极11焊接,雷电流引线13直接与金属丝网5的铜箔围带6焊接;再铺覆叶片壳体纤维布及芯材;
(2)抽真空灌注树脂一起成型,将金属丝网、高密度双向纤维布(800克/平方米)、碳晶电热膜、温度传感器固化在叶片壳体内;
(3)在抗剪切腹板灌注成型后,把金属丝网的雷电流引线、碳晶电热膜的电源线、温度传感器的信号线固定在抗剪切腹板上;
(4)将迎流面壳体、被流面壳体、抗剪切腹板组装粘接,然后合模保温、保压,至粘接剂彻底固化后脱模,叶片成型;
(5)在叶片整个表面喷涂防风沙耐腐蚀的专用油漆。
实例二
人工手糊工艺包括如下步骤:
(1)分别用模具灌注叶片迎流面壳体、背流面壳体、抗剪切腹板,再组装粘接,合模保温、保压,至粘接剂彻底固化后脱模,叶片成型;
(2)在壳体1上钻好碳晶电加热膜电源线9的穿孔、温度传感器信号线8的穿孔、避雷装置的螺栓7的穿孔;
(3)在叶片壳体1的前缘覆冰区域安装温度传感器2,并与其信号线8钎焊连接;
(4)在叶片壳体1的前缘覆冰区域表面涂覆粘接剂,再将面积与覆冰区域表面相当的碳晶电加热膜3铺覆上去,并与其电源线9钎焊连接;
(5)在碳晶电加热膜3表面涂覆粘接剂,再将面积与碳晶电加热膜3相当的高密度双向玻璃纤维布4铺覆上去;
(6)裁剪一块金属丝网5,其面积应大于碳晶电加热膜3,在金属丝网的一边钎焊铜箔带6,在铜箔带6上钻螺栓孔,将金属丝网5铺覆在双向玻璃纤维布4上面,其铜箔带6的螺栓孔与叶片壳体上的螺栓孔对齐,将螺栓7穿进螺栓孔,与雷电流引线13连接,并将铜箔带6与螺栓7钎焊连接、雷电流引线13与螺栓7钎焊连接;
(7)将碳晶电加热膜电源线9、温度传感器信号线8、雷电流引线13固定在抗剪切腹板12上,并从叶片根部引出;
(8)在金属丝网5上铺覆低密度双向玻璃纤维布,将金属丝网5覆盖,做为金属丝网5的防护层,然后在叶片整个表面喷涂防风沙耐腐蚀的叶片专用油漆。
2021年11月,《风力发电机叶片的融冰加热结构及其制作方法》获得2020年度四川专利奖三等奖。
风力发电机叶片制造-风力发电机叶片的结构图
风力发电机叶片制造 摘要 :以某企业研制生产的 1.5 MW 变速变桨距型风力发电机叶 片为例 ,介绍叶片的规格、材料、性能参数、模具制作以及生产过程 , 并对其进行综合评价。 关键词 :风力发电 风电叶片 叶片生产制造 1 背景介绍 风力发电机是一种将风能转化为机械能 ,再由机械能转化为电能 的机组和系统 ,前一种转化是由风轮实现的 ,后一种转化是由发电机实 现的。风轮主要由两部分组成 :叶片 (一般为 3 片)和轮毂 ,轮毂只起连 接的作用 ,叶片是将风能转化为机械能的唯一关键部件。叶片的外形 决定了整个机组的空气动力性能 ,一个具有良好空气动力外形的叶片 , 可以使机组的能量转换效率更高 ,获得更多的风能。同时 ,叶片又承受 着很大的载荷 (风力和质量力 ),自然界中的风况复杂多变 ,叶片上承载 的载荷也就很复杂 ,整个风力发电机组主要载荷的来源是叶片 ,所以叶 片必须有足够的强度和
项目严格按照项目计划书要求展开工作,并达到了相应的目标。本项目在国内首次提出风力发电机叶片覆冰与防除冰的研究方向并针对所涉及的基础性问题开展了系统性的研究工作。通过机理分析、模型研究与试验研究相结合的方法,在雨凇与雾凇、不同覆冰程度、不同表面粗糙度下研究风力发电机叶片的覆冰机理、覆冰增长过程及其对风机出力的影响,并在此基础上开发可以预测风机叶片覆冰的数值计算方法;同时,分析并建立风机防冰除冰过程中的热平衡模型,并研究以防除冰元件设计、防除冰元件布置方式及防除冰功率选择为核心的风机叶片防冰除冰的方法和技术措施。研究发现:覆冰类型、覆冰程度和表面粗糙度均对叶片气动特性有显著影响;同时,本项目所建立的叶片覆冰增长模型、粗糙度模型、防冰除冰模型均与试验结果有较好的吻合。研究结果为解决风力发电机在覆冰地区使用存在的问题提供理论基础和技术依据;项目所建立的叶片覆冰增长模型和防冰除冰模型有助于推动国内叶片覆冰及防除冰领域的研究,所设计的基于循环控制策略的风力发电机叶片电加热融/防冰技术与装置具有较好的工程应用前景和重要的工程应用价值。
面对2011年年初的冰冻灾情,由湖南省科技厅牵头组织、湖南大学王耀南教授领衔的研究团队协同湖南电力试验研究院,国防科大等多家单位研制的新型除冰、融冰装置紧急投入到电网除冰抗灾工作中,成为我省电网抵御冰冻灾害队伍中的一支科技新力军。在冰冻灾害来临前,湖南电力试验研究院根据气象信息在12月30日就及时预报了本次电网覆冰过程,并积极开展电网线路直流融冰抗灾工作。在此次融冰过程中,大量采用了最新研制的先进直流融冰装置,先后对220kV福外线、黔平线、苏烟线、城用线和110kV阳锦线、阳象线等6条线路成功实施了线路直流融冰。本次现场融冰实践证明,直流融冰具有操作简便、对电网运行方式影响小、所需融冰功率小、融冰效率高等优点。
《直流融冰的主回路设置方法》的目的:提出直流融冰的主回路设置方法,适用于高压及特高压电网输电线路的融冰,通过扩展直流融冰回路的少量一次设备,实现将无功控制功能作为直流融冰装置的辅助功能,提供线路需要的感性无功功率的功能,进行动态无功补偿。
《直流融冰的主回路设置方法》的技术方案是:
直流融冰的主回路设计方法,包括三相三绕组整流变压器、12脉动整流装置、控制保护装置、自动切换装置和直流侧刀闸,三相三绕组整流变压器的接线组采用D/d0/y11或Y/y0/d11接线、三相三绕组整流变压器的两个低压侧绕组相位移30度,其特征是:三相三绕组整流变压器的2组低压侧的三相输出分别连接到12脉动整流装置的2个阀组的三相输入,12脉动整流装置的正负极输出在直流融冰方式时分别通过直流侧开关连接到需要进行融冰的三相交流线路,形成直流融冰主回路(如图2所示),可对三相交流线路进行直流融冰;在无功补偿方式扩展一次设备可分别形成直流融冰主回路(如图4、图5所示)。
其中,如图3所示,增加第一组电抗器和转换开关刀闸,在整流变压器与整流装置之间每相串连1台电抗器LTCR,每台电抗器两侧和一把转换开关刀闸并联(如图3所示),根据需要可以增加滤波器。
其中,如图4所示,闭合并联的转换开关刀闸电抗器LTCR旁路(即短接),则主回路进入融冰运行状态;打开并联的转换开关刀闸将电抗器LTCR连接至换流器,再把直流融冰装置的正、负极母排与两个阀组之间的中性点母线之间短接,则主回路进入无功补偿运行状态,作为晶闸管控制的星形连接的可控电抗器运行。
其中,如图5所示,另设有第二组电抗器和转换开关刀闸,每台电抗器两侧和一转换开关刀闸并联,并在换流器两个阀组的直流侧和交流侧增加连接线,每台电抗器两侧和一转换开关刀闸串联接在连接线上,分别按照“直流侧A相接交流侧B”,“直流侧B接交流侧C”和“直流侧C接交流侧A”的方式连接,打开转换开关刀闸将电抗器LTCR连接至换流器,则主回路进入无功补偿运行状态,作为晶闸管控制的三角形连接的可控电抗器运行。
由于整流变压器采用D/d0/y11或Y/y0/d11接线,副边两个绕组相位移30度;融冰整流装置采用12脉动接线方式,融冰装置运行时对系统的谐波和无功影响很小。以用于500千伏交流线路融冰的60兆瓦固定式直流融冰装置为例,其直流融冰运行时需要的有功、无功和滤波的总容量约为75兆伏安,通常不到变电站500千伏主变35千伏侧容量的1/3,对系统影响很小;直流融冰装置运行时产生的谐波是12k±1次谐波,k为1,2,3,...,即融冰装置运行时产生的谐波主要是11、13次等特征谐波。融冰装置运行时产生的谐波对系统影响很小,对融冰装置本身的稳定运行没有影响,但是35千伏侧略超过相关中国国家标准,融冰运行时可以不必装设交流滤波器设备;对500千伏侧和220千伏侧的电压谐波畸变影响很小,满足相关中国国家标准。
融冰整流装置对三相线路采用的融冰方式为:退出运行的线路,通过二相/三相的自动切换装置,由控制装置来自动切换三相线路连接到整流装置,保证三相线路均衡融冰,切换过程中整流装置及开关的操作都由自动顺序控制来实现。这种融冰方式的特点是三相线路融冰程度均衡,不会产生三相导线的张力差并对杆塔造成影响。该技术具体可以参考同时提出的另一申请“直流融冰三相交流线路自动切换的方法”中。
《直流融冰的主回路设置方法》有益效果:融冰装置兼具有SVC功能,通过扩展一次设备,融冰装置在不承担融冰功能时可以兼做静止型动态无功补偿装置,进行动态无功补偿,充分利用用户投资;同时回路接线简单,有效地解决日常运行维护的问题。与AREVA技术方案亦有所不同,AREVA技术方案采用设备较多、接线复杂,在进行直流融冰和无功补偿(SVC)工作方式转换时,改接线工作量很大;且直流融冰和无功补偿(SVC)工作时都必须配置交流滤波器。