选择特殊符号
选择搜索类型
请输入搜索
备案信息
备案号:72486-2020
备案月报: 2020年第4号(总第240号)
风力发电机组常见故障及处理方法;1、风力发电机剧烈抖动 (1)紧固拉索;(2)拧紧松动部位;(3)更换桨叶;(4)拆卸、润滑保养,重新安装;2、风轮转速明显降低(1)润滑、保养; (2)更换轴承;(...
请问您说的是电气系统还是机械系统,总的说分为,变桨系统、偏航系统、变频系统,再分的话可就细了。有轮毂、叶片、主轴、齿轮箱、联轴器、发电机等
风力发电机组每台风车的发电功率是多少? 一组风力发电机组由多少台风车组成?
这个不一定啊~ 有650 750 1500 2000 3000 单位全是kW风力发电机没有论组的 一般都是一台风力发电机 有一个风车组成
兆瓦级风力发电机组叶片设计
兆瓦级风力发电机组叶片设计
风力发电机组运行规范
岭门风电场运行检修规程 风力发电机组运行规程 版 本: 编 制: 校 对: 审 核: 批 准: 2 目录 2 前言 本规程给出了对风力发电机组 (以下简称风电机组) 设备和使用人员的要求 ,规定了正常 运行、维护的内容和方法以及故障的处理的原则与方法。 3 一、范围 本规程适用于并网风力发电机组成的总容量在 4.95 万千万时及以上的、单机容量为 1500KW变桨距水 平轴风电机组组成的风力发电场。 二、引用标准 2.1 《风力发电场运行规程》 2.2 《风力发电机组电气系统》 2.3 《明阳机组运行状态及故障代码手册 -中文版 v2.0 》 2.4 《电力工业安全知识》 三、对设备的基本介绍 3.1 风力发电机组参数 序号 描 述 单位 规 格 1 机组数据 1.1 制造商 明阳风电 1.2 型 号 MY1.5-82/65 1.3 额定功率 kW 1500 1.4 叶轮直径 m 82
飞机结冰的防护系统可分为防冰系统与除冰系统,防冰意在防止在飞行过程中冰的形成,除冰是将飞机表面上已形成的冰去除。根据防除冰方法的原理,目前已经使用和正在研发的防除冰系统主要包括以下三类:
(1)冰点抑制法
冰点抑制法,顾名思义就是降低液体的凝固温度。液体防冰系统利用的原理就为冰点抑制法,向需要防护的部件表面喷涂防冰液,当过冷水滴撞击表面时与之混合,使得混合液体的凝固点低于水的凝固点从而阻止了冰的形成。该系统通常连续喷射防冰液,也可以周期性喷射,常用的防冰液为乙二醇、异丙醇、甲醇等。
二战期问,英国航空工程师开发了便于时示除冰的多孔机翼前缘。该不锈钢机翼前缘设计了可以用于流经防冰的乙二醇溶液的孔。例如Cessna 206安装了液体防冰系统,此系统装载了27.25L乙二醇,可以运行3.5小时,但增加的附加重量为13.61kg。 该系统的优点是:1,机翼前缘具有优异的耐受性;2,在除冰工作结束后,不会有剩余冰层或再生冰层;3,系统硬件的寿命很长;4,耗能较少;5,飞行员除冰操作比较简单。但不足之处是:1,很难去除粘附强度很大的冰层;2,直升机由于工作时问长而不适合安装液体防冰系统;3,也不适用于涡轮螺旋桨匕机;4,防冰液消耗量大,维修麻烦。
(2)热融法
热融法防除冰的原理是利用高热量使冰融化并蒸发或直接升华,该方法受热流大小的限制。此类系统可以采用加热冲压空气、压气机引气、高温废气、热油或者电热能等方式。热融法的典型代表为热气防除冰与电热防除冰系统。
热气防除冰系统是利用热空气将飞机部件加热以达到防除冰的目的。活塞式发动机多采用汽油加温器等加热冲压空气作热气源;喷气式发动机一般从发动机的压气机内引气作为热源。所引的热空气通过供气管道分配到需要除冰的各个部件,经过热量交换破坏冰层与蒙皮问的粘附强度,最后冰层在气动力与惯性力作用下从飞机上脱落。由于蒙皮的热惯性大,该系统不适用于周期性加热,而多采用连续加热方式。其优点在于维护简单,工作可靠,不足之处是发动机引气会降低发动机的功效,增加了燃耗,且热的利用率很低。
电热防除冰方法就是将电能转化为热能,再加热飞机部件以达到防除冰的目的。该蒙皮一般采用五层复合结构,电热片嵌入在蒙皮中。电热防除冰技术通常用于热气防除冰系统难以涉及的部位,如推进器、机身头锥、直升机螺旋桨与轮毅等。电热防除冰可以连续也可以周期问断加热,不足之处是应用范围有限且消耗电能大。
另外一种正在研究使用的微波除冰方法也是利用升高表面冰层温度的方法,在飞机结冰的蒙皮的缝隙中填充微波材料,当飞机蒙皮发生结冰时,飞机上的微波发射器就会产生微波,并通过波导管射到冰层使冰融化。该系统多见于旋翼飞机,能耗少,使用与维护简单,但因为装有微波发生器,很容易被雷达捕获。
(3)表面变形法
为减少大量能量的消耗,开发了使飞机上的积冰发生变形破坏的除冰方法,属于机械除冰范畴。当蒙皮表面发生变形时,粘附在蒙皮上的冰层也随之改变,出现破裂或者脱落现象,气动力或惯性力将残余的冰带走。主要的除冰系统包括气囊式除冰、超声波除冰、压电除冰、电脉冲除冰等,下面逐一介绍这儿类除冰方法。
气囊式除冰方法是最早出现的机械除冰方法之一,该方法是在需要防护的部位安装充气囊,当有除冰需要时,气囊充气,气管向外突出使得冰层形变破裂,当除冰完成后,气囊收缩恢复到原有的气动外形。MV-22“鱼鹰”与ATR42 飞机均装有气囊式除冰装置。该除冰方法的优点是工作可靠、节省能量,但它却有一个致命的弱点,即阻力大,不适于高速时示的飞机,并且启动气动罩除冰时不可能进行得很彻底,将留有一些剩余的冰,这会使得阻力增加,进而破坏飞机原有的气动外形。
超声波除冰的原理是利用超声波驱动器形成的Lamb和SH波在介质中传播时产生的速度差,在冰与粘附层界面形成剪切应力,通过该剪切力达到去除冰层的目的。该项技术仍处于实验研发阶段,还没有真正运用在飞机上。
压电除冰技术也是一种发展中的除冰技术,通过激励压电驱动器,使得蒙皮在低频范围内达到共振,并改变蒙皮上附着的冰层结构以去除冰层。
电脉冲除冰系统是在俄罗斯发展较成熟的除冰系统,美国对其研究也比较充分,但仍滞后于俄罗斯。其原理如图1所示,在金属蒙皮下方安装脉冲线圈,利用瞬问放电技术在金属蒙皮上形成电磁涡流场,从而产生了瞬态的电磁力,该电磁力导致蒙皮快速振动并使冰层发生形变而破裂或者脱落,最后在气动力和惯性力的作用下将残余的积冰去除。该技术已经成功应用在俄罗斯伊尔系列飞机上,且显示出高效、稳定与节能等优点。
流体防爆电加热器是一种消耗电能转换为热能,来对需加热物料进行加热。在工作中低温流体介质通过管道在压力作用下进入其输入口,沿着电加热容器内部特定换热流道,运用流体热力学原理设计的路径,带走电热元件工作中所产生的高温热能量,使被加热介质温度升高,电加热器出口得到工艺要求的高温介质。电加热器内部控制系统依据输出口的温度传感器信号自动调节电加热器输出功率,使输出口的介质温度均匀;当发热元件超温时,发热元件的独立的过热保护装置立即切断加热电源,避免加热物料超温引起结焦、变质、碳化,严重时导致发热元件烧坏,有效延长电加热器使用寿命。
流体防爆电加热器典型的应用场合主要有:
⒈化工行业的化工物料升温加热、一定压力下一些粉末干燥、化工过程及喷射干燥。
⒉碳氢化合物加热,包括石油原油、重油、燃料油、导热油、滑油、石腊等
⒊工艺用水、过热蒸汽、熔盐、氮(空)气、水煤气类等等需升温加热的流体加温。
⒋由于采用先进的防爆结构,设备可广泛应用在化工、军工、石油、天然气、海上平台、船舶、矿区等需防爆场所。
⒈体积小、功率大:加热器主要采用集束式管状电热元件
⒉热响应快、控温精度高,综合热效率高。
⒊加热温度高:加热器设计最高工作温度可达850℃。
⒋介质出口温度均匀,控温精度高。
⒌应用范围广、适应性强:该加热器可适用于防爆或普通场合,防爆等级可达dⅡB级和C级,耐压可达20MPa。
⒍寿命长、可靠性高:该加热器采用特殊电热材料制造,设计表面功率负荷低,并采用多重保护,使电加热器安全性和寿命大大增加。
⒎可全自动化控制:根据要求通过加热器电路设计,可方便实现出口温度、流量、压力等参数自动控制,并可与机算机联网。
⒏节能效果显著,电能产生的热量几乎100%传给加热介质。
将电能转变成热能以加热物体。是电能利用的一种形式。与一般燃料加热相比,电加热可获得较高温度(如电弧加热,温度可达3000℃以上),易于实现温度的自动控制和远距离控制,(如车载电加热杯)可按需要使被加热物体保持一定的温度分布。电加热能在被加热物体内部直接生热,因而热效率高,升温速度快,并可根据加热的工艺要求,实现整体均匀加热或局部加热(包括表面加热),容易实现真空加热和控制气氛加热。在电加热过程中,产生的废气、残余物和烟尘少,可保持被加热物体的洁净,不污染环境。因此,电加热广泛用于生产、科研和试验等领域中。特别是在单晶和晶体管的制造、机械零件和表面淬火、铁合金的熔炼和人造石墨的制造等方面,都采用电加热方式。
根据电能转换方式的不同,电加热通常分为电阻加热、感应加热、电弧加热、电子束加热、红外线加热和介质加热等。
随着现代飞机对于高效、低能耗要求的提出,对于防/除冰也有了相应更高的要求,而电脉冲除冰技术以其具有结构简单、尺寸小、重量轻、能耗少、效率高及维修方便等显著优点,具有广泛的应用前景,是一种极具发展前途的飞机除冰方式。
今后,在电脉冲除冰脉冲电路、脉冲激励与除冰效果研究的基础上,针对影响电脉冲除冰效果的因素,如冰形、除冰部位、线圈安装位置等,进一步完善电脉冲除冰的设计流程;针对电脉冲除冰会产生电磁场这一现象,应论证电磁辐射干扰等是否会影响飞机的安全。
另外,研究复合材料在电脉冲除冰技术中的使用问题,以及与现有航空电子设备和电气系统的一体化问题都是未来需要考虑和研究的内容。