选择特殊符号
选择搜索类型
请输入搜索
《非线性动力学与控制的若干理论及应用》是2011年科学出版社出版的图书,作者是杨绍普,曹庆杰,张伟。
因为重力是不变的,弹力是与位移X有关,当这两个力同时取微分后,重力的微分为零,导致公式中就没有重力了。能量对时间的导数是能量随时间的变化,能量对距离的导数是能量随距离的变化。可以用能量法和牛顿二定律。...
研究水和其他液体的运动规律及其与边界相互作用的学科。又称液体动力学。液体动力学和气体动力学组成流体动力学。液体动力学的主要研究内容如下:①理想液体运动。可忽略粘性的液体称为理想液体,边界层外的液体可视...
飞行动力学(AIRCRAFT DYNAMICS ) 是研究飞行器在空中的运动规律及总体性能的科学。所有穿过流体介质或者是真空的运动体,统称为飞行器。主要包括航天器、航空器、弹箭、水下兵器等。研究弹...
深埋隧道施工过程的非线性动力学特性分析
为了地下空间的有效合理开发、施工优化、确保工程顺利进行,必需对深埋隧道围岩的稳定性进行分析。基于快速拉格朗日法和非线性动力学方法对隧道围岩的能量耗散特性进行分析,论证了围岩体的能量分布是其应力分布的决定因素以及由于岩体单元应力状态的变化而发生屈服准则的改变是其破坏的根本原因。阐叙了围岩系统状态和最大Lyapunov指数的关系,通过计算发现能量序列的最大Lyapunov指数为负数时,系统处于有序的定常态,围岩发生了急剧的屈服破坏现象,而最大Lyapunov指数为正数时,系统处于孕育变化的混沌状态,围岩处于相对稳定状态。
Lorenz系统的非线性动力学行为及仿真
针对非线性动力学行为的特点,利用计算机仿真技术,应用数学微分方程理论以及Matlab软件对超混沌类Lorenz系统的非线性动力学行为及其计算机仿真情况展开具体分析与探索,包括Lorenz系统数学模型及其吸引子、Lyapunov指数和维数、时序波形、功率谱、Poincare映射,以及Lorenz平衡点等。结合3种情况对超混沌类Lorenz系统的计算机仿真进行分析,整体研究成果为同步加密通信工程应用、混沌控制等提供了一定理论依据和实践支持,具有积极的理论与实践意义。
非线性动态系统运动分析理论及应用
作 译 者:曹少中,赵伟
出版时间:2017-01
千 字 数:266
版 次:01-01
页 数:204
开 本:16开
I S B N :9787121291180
第1章 绪论 1
1.1 引言 1
1.2 非线性系统的实例 3
1.3 非线性系统运动分析研究现状 7
第2章 非线性动态系统分析的理论基础 11
2.1 微分方程及其解的定义 11
2.1.1 微分方程的分类 11
2.1.2 微分方程的解 13
2.2 柯西定理 14
2.3 幂级数解法 20
2.4 小结 25
第3章 几种非线性动态系统分析方法 26
3.1 范例 26
3.2 摄动方法 27
3.3 Adomian分解法 28
3.3.1 Adomain分解法的基本思想 28
3.3.2 Adomain分解法的基本原理 29
3.3.3 算例 31
3.4 直接积分法 32
3.4.1 直接积分法的基本思想 32
3.4.2 算例 33
3.5 小结 34
第4章 非线性动态系统状态方程迭代解法 35
4.1 引言 35
4.2 非线性系统自由运动状态方程的任意阶近似迭代解 36
4.2.1 非线性系统的线性化 36
4.2.2 广义朗之万梯度方程 38
4.2.3 非线性系统自由运动状态方程的任意阶近似解 40
4.2.4 方均包络矩阵转移方程 45
4.2.5 本节小结 48
4.3 非线性系统状态方程的任意阶近似迭代解 48
4.3.1 非线性系统受控运动状态方程的任意阶近似解 48
4.3.2 非线性系统状态方程的任意阶近似解 56
4.3.3 仿射非线性系统状态方程的任意阶近似解 63
4.3.4 本节小结 69
4.4 非线性协调控制系统状态方程的任意阶近似 迭代解 70
4.4.1 非线性协调控制系统状态方程的任意阶近似迭代解 70
4.4.2 非线性协调控制系统状态方程的任意阶近似迭代解
的收敛性 73
4.5 小结 74
第5章 非线性动态系统状态方程级数解法 75
5.1 动力学系统状态空间转移数学模型 75
5.1.1 引言 75
5.1.2 动力学系统状态空间正向及逆向转移数学模型 77
5.1.3 动力学系统状态空间正向与逆向转移互逆求解 78
5.1.4 应用实例 82
5.2 基于时态空间的非线性动力学方程级数解 85
5.2.1 引言 85
5.2.2 时态空间及非线性动力学方程 85
5.2.3 线性齐次方程的普遍解析解及非线性动力学系统分类 86
5.2.4 非线性动力学系统状态方程的任意阶近似解 89
5.2.5 任意阶近似解析解的收敛性 94
5.2.6 结论 95
5.3 非线性动力学方程的伪线性化解法 96
5.3.1 引言 96
5.3.2 时态空间、伪线性分离及齐次方程的解 96
5.3.3 非线性动力学方程的任意阶近似解 97
5.3.4 任意阶近似解的收敛性 100
5.3.5 结论 101
5.4 非线性动力学方程的最简洁普适级数解 101
5.4.1 引言 101
5.4.2 时态空间及非线性动力学方程的级数解析解 102
5.4.3 非线性动力学方程无穷级数解的收敛性 105
5.4.4 结论 106
5.5 小结 107
第6章 一般非线性动态系统分析 108
6.1 一般非线性动态系统状态方程 108
6.2 一般非线性动态系统状态方程的直接积分解法 112
6.2.1 引言 112
6.2.2 非线性控制系统状态方程的级数解析解 113
6.2.3 非线性控制系统状态方程级数解的收敛性 118
6.3 算例 119
6.4 小结 123
第7章 直接积分法在求解非线性偏微分方程中的应用 124
7.1 Schrodinger方程的近似解 124
7.2 小结 137
第8章 直接积分法在球形机器人控制系统上的应用 138
8.1 引言 138
8.2 球形机器人的研究现状 138
8.3 球形机器人动力学模型 145
8.4 球形机器人控制器的设计 147
8.5 球形机器人控制系统状态方程的级数解析解 151
8.6 小结 154
第9章 直接积分法在六自由度并联平台控制系统上的应用 156
9.1 六自由度并联平台简介 156
9.2 六自由度并联平台结构 157
9.3 六自由度并联平台的应用 159
9.4 六自由度并联平台运动学反解与运动建模 161
9.5 六自由度并联平台动力学建模 166
9.6 六自由度并联平台控制系统状态方程的级数解析解 178
9.7 小结 182
参考文献 183 2100433B
本书系统地论述了非线性动态系统运动分析的初步理论、方法和技术。