选择特殊符号
选择搜索类型
请输入搜索
《过饱和态下典型气溶胶表面和内部结构的分子谱学研究》,王枫著,导师张韫宏指导。关键词 :气溶胶 大气污染 拉曼光谱 傅里叶变换 硫酸镁
论文作者王枫著
导师张韫宏指导
学位级别d 2008n
学位授予单位北京理工大学
学位授予时间2008
关键词气溶胶 大气污染 拉曼光谱 傅里叶变换 硫酸镁
馆藏号P401
唯一标识符 108.ndlc.2.1100009031010001/T3F24.003938548
馆藏目录2009\P401\1
1;气溶胶(aerosol)由固体或液体小质点分散并悬浮在气体介质中形成的胶体分散体系,又称气体分散体系。其分散相为固体或液体小质点,其大小为0.001~100微米,分散介质为气体。天空中的云、雾、尘...
所谓溶胶就是胶体溶液,是由分散质的细小粒子分散在介质中形成的分散物系。溶胶的分类由分散介质来决定(也就是溶液中的溶剂),如果是气态介质,就是气溶胶;液态介质,就是液溶胶;固态介质,就是固溶胶;大部分溶...
回答后没有得分,太郁闷了,不过还要告诉你,江西新余做气溶胶的最多
三峡工程运行后长江中游溶解气体过饱和演变研究
为了分析三峡工程运行后泄洪对长江中游溶解气体过饱和的影响,建立了长江中游溶解氧数学模型,对不同流量下长江中游的溶解氧过饱和演变进行了模拟预测。模拟结果表明,三峡和葛洲坝过坝水流的溶解氧饱和度在流量40000~50000m3/s和100000m3/s附近存在2个峰值,长江中游河道天然情况下溶解氧过饱和恢复速度较为缓慢,平均每100km降低5%,洞庭湖水的汇入能显著降低长江干流的溶解氧过饱和度。当三峡出库流量超过40000m3/s时,其影响范围可达400km以上。讨论了溶解气体过饱和的不同指标间的关系,对气体过饱和可能造成的影响以及对长江中游鱼类目前的影响进行了阐述,认为通过三峡水库的调度减少出库高流量次数和历时是减缓下游溶解气体过饱和的有效手段。
1) 理想、清洁半导体表面:理想表面产生表面能级(表面态)的原因是塔姆(Tamm)首先提出的,他认为晶体的周期性势场在表面处发生中断引起了附加能级.因此,这种表面能级称为塔姆表面能级或塔姆能级(Tamm Level).塔姆曾计算了半无限克龙尼克–潘纳模型情形,证明在一定条件下每个表面原子在禁带中对应一个表面能级.上述结论可推广到三维情形,可以证明,在三维晶体中,仍是每个表面原子对应禁带中一个表面能级,这些表面能级组成表面能带.因单位面积上的原子数约为,故单位面积上的表面态数也具有相同的数量级.表面态的概念还可以从化学键的方面来说明.以硅晶体为例,因晶格在表面处突然终止,在表面的最外层的每个硅原子将有一个未配对的电子,即有一个未饱和的键.这个键称为悬挂键,与之对应的电子能态就是表面态.因每平方厘米表面约有个原子,故相应的悬挂键数也应为约个.表面态的存在是肖克莱等首先从实验上发现的.以后有人在超真空对洁净硅表面进行测量,证实表面态密度与上述理论结果相符。
2) 实际表面:在表面处还存在由于晶体缺陷或吸附原子等原因引起的表面态这种表面态的特点是其数值(表面态密度)与表面经过的处理方法及所处的环境有关。
界面反应在诸多与化学、生命科学、环境科学相关的过程中至关重要,其研究一直备受关注,特别是在当前大面积长时间的雾霾天气严重危害人类健康和社会发展的情况下,气溶胶表面的化学反应机理越来越引起人们的重视。本研究项目首先通过结合温度积分增强抽样方法和量子化学计算方法,发展出适用于研究表面化学反应的高效分子模拟方法,在此基础上重点研究两类重要的气-液界面的化学反应的机理:醛类化合物的氧化反应和氨基酸的缩合反应。最后,我们也重点对与雾霾等现实污染问题紧密相关的气溶胶在炭黑表面的反应与聚集进行探索性研究。
美国海洋光学光谱仪的应用领域非常广泛,如农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、宝石检测、LED检测、印刷、造纸、喇曼光谱、半导体工业等。下面介绍一些典型应用。
一般来说,物体和浓稠液体的颜色测量可以使用不同的实验布局,比如使用反射型光纤探头或积分球。在该测量中,可以使用波长范围在380到780nm,分辨率(FWHM)为5nm的光谱仪;此外,还需要白光连续光源和白色反射瓦。对于测量纺织品、纸张、水果、葡萄酒、鸟类羽毛颜色等不同的应用可以使用不同的光纤探头。
液体的吸收率测量可以用不同的实验布局和波长范围来实现,如使用浸入型光纤探头或流动样品池进行在线吸收率测量,或使用样品固定器进行样品的吸收率测量。对于测量紫外/可见波长范围的光谱仪,可以选择波长范围200-1100nm、分辨率1.4nm(FWHM)。此外还需要氘-卤素灯作为光源。不同的应用可以选择不同的光纤探头。
发射光谱测量可以用不同的实验布局和波长范围来实现,还要用到余弦校正器或积分球。发射光谱测量可以在紫外/可见和可见/近红外波长范围内测量。
对于发射光谱的绝对测量,光谱仪可以配置成波长范围从200-400nm或350-1100nm,或组合起来实现紫外/可见200-1100nm,并可以在美国海洋光学公司的定标实验室里进行辐射定标。定标后的实验布局不能改变,如光纤和匀光器都不能更改。
为了使实验布局更灵活,用可见/近红外定标光源(LS-1-CAL)或紫外/可见/近红外定标光源(DH2000-CAL)可以在用户现场进行定标。功能强大的广州标旗软件可以完成定标并载入辐射定标数据。
最简单而且迅速地测量LED的整个光通量的方法就是使用一个积分球,并把它连接到一个美国海洋光学公司的光谱仪上。该系统可以用卤素灯进行定标(LS-1-CAL-INT),然后用广州标旗软件从测量到的光谱分布计算出相关参数,并实现辐射量的绝对测量。所测光源的光谱发光强度还可以用μW/cm2/nm来计算、显示并存储。另外的窗口还可以显示大约10个参数:辐射量μW/cm2, μJ/cm2, μW或μJ;光通量lux或lumen,色轴X, Y, Z, x, y, z, u, v和色温。
美国海洋光学的膜厚测量系统基于白光干涉测量原理,可以测量的膜层厚度10nm-50μm,分辨率为1nm。薄膜测量在半导体晶片生长过程中经常被用到,因为等离子体刻蚀和淀积过程需要监控;其它应用如在金属和玻璃材料基底上镀透明光学膜层也需要测量膜层厚度。配套的广州标旗应用软件包括丰富的各种常用材料和膜层的n值和k值,可以实现膜层厚度的在线监测,并可以输出到Excel文件进行过程控制。
光纤光谱仪为真空室内镀膜过程的监控提供了一种灵活的测量手段,它可以方便地把光引入并引出真空室或洁净工作仓,同时选择镀膜过程分析所需要测量的参数。在实际的在线生产中,可以在工作仓中放置几个探头来检测整个生产过程。图示为真空室镀膜过程监控的典型实验布局。在这里一个反射型光纤探头用来在线监测镀膜过程。氘-卤素灯发出的光被导入真空室并传导到反射探头上,反射光由反射探头传导到光谱仪中;也可以再增加一个通道作为参考测量来补偿光源的波动。
氧浓度传感器包括一个光纤荧光探头,探头表面镀有专利技术的膜层,并使用一个蓝光LED作为激发源,还有一台高灵敏度的微型光谱仪。该传感器应用荧光技术测量氧的绝对含量,样品产生的荧光反射回探测器上。当气态或液态样品中的氧扩散到探头的膜层上时,就会使荧光猝灭,猝灭的程度与样品中的氧的浓度是相关的。
颜色是判断钻石成色的决定因素之一,天然钻石和人造钻石可以用波长范围在400-750nm的光检测出来。在天然Ia类钻石的吸收谱中可以发现415nm和478nm的特征波长,而人造钻石在该波长处则没有吸收峰。人造钻石中可以探测到592nm和741nm的波长。而且天然钻石和人造钻石的吸收峰幅值相差近10倍。当然其它宝石也可以用这种方法检测,如红宝石、紫翠玉、蓝宝石等。
在许多应用领域如生物学(叶绿素和类胡萝卜素)、生物医学(恶性病的荧光诊断)和环境应用中都需要用到荧光检测技术。荧光检测通常需要高灵敏度光谱仪。在大多数应用中荧光能量仅为激发光能量的3%,波长要长于激发光,而且时散射光。在荧光测量系统中,一定要避免激发光进入到光谱仪中。
在过去的十年中,美国海洋光学公司帮助许多用户进行了血成分分析的非侵入式和侵入式的光谱学测量手段,测量了许多重要的医学指标,如组织和纹理中的氧浓度、血色素、细胞色素和水浓度等。非侵入式检测系统包括微型光纤光谱仪、LS-1卤钨灯和反射型光纤探头,而侵入式检测系统则使用了一根植入于导管中的特殊的反射型光纤探头。
在需要连续测量氧浓度、血色素的氧化和去氧化过程的医学应用中,该系统得到了成功的应用。
Oceanoptics Raman拉曼光谱仪系统是一台高度集成化而且价格很低的系统,适用于需要拉曼测量的应用领域。Oceanoptics Raman拉曼系统包括半导体激光器,光纤光谱仪,和多种可选光纤探头和广州标旗Raman应用软件。
Oceanoptics Raman拉曼光谱仪系统有量个基本型:1。低成本非冷却型,分辨率25cm-1。2。高性能TE致冷型,分辨率10cm-1。
Oceanoptics Raman拉曼光谱仪系统特别适用于反应过程监控、产品识别、遥感,水溶液、凝胶体和其它介质中高散射粒子的判定。Oceanoptics Raman拉曼光谱仪系统的光源也可以选择50mW或100mW的532nm固体绿光激光器、氩离子激光器或HeNe激光器。
广州标旗软件可以与其它能用于颜色测量的美国海洋光学光谱仪配合使用。主要的应用领域是印刷业、印染业和绘画业。它的主要功能是创建一个新颜色与数据库中的已知颜色进行比对并进行校正,也可以创建一个新颜色来与着色文件中的颜色进行比对。
LIBS(激光诱导荧光)技术是基于激光束聚焦到被测样品上所产生的物质电离过程,电子的再结合会发光,对该光谱进行分析研究可以得到被测物质的成分。
LIBS技术最初是由美国Los Alamos国家实验室的David Cremers研究小组在二十多年前发明的。从此以后,LIBS技术成功地被用于痕量元素的检测和恶劣环境下的在线成分分析等应用中。
根据所分析的元素不同,LIBS技术可以探测ppm到ppt级的含量。而且不需要对所测样品进行预加工(如抛光,溶解等),可以分析固态、液态、气态样品。
LIBS是一款结构紧凑、操作简便、分析结果准确的分析系统。它把高能激光束聚焦到样品上,然后同轴收集产生的信号光,并用高分辨率、多通道、快触发型光谱仪进行分析。
14.园艺测量
园艺测量光谱仪被开发用于测量温室中可见光和近红外光区域内的光强度和光谱分布。
光的强度和光强的谱线分布是影响植物的生长和光合作用的非常重要的因素。对于光强度,可以通过经由辐射校准过的准确地测量出光子数和其他参数,专门针对园艺学测量。光谱仪可以通过蓝牙接口无线连接到远程计算机。计算机可以用来控制温室中滤光镜的移动或者控制特殊的灯泡。