选择特殊符号
选择搜索类型
请输入搜索
包括信号完整性、抖动和定时分析在内的设计验证;高速复杂设计方面的设计检定;根据行业标准对串行数据流进行的认证测试;内存总线分析和调试;原型机启动和电源验证;瞬态现象的研究和调查;复杂系统的生产测试;瞬态信号或宽带射频信号的频谱分析。 2100433B
主要性能指标;;模拟宽带高达33GHz,上升时间快达9ps。支持对最新的高速串行标准的测试;33GHz型号有2条通道提供真正的33GHz实时模拟带宽;业界领先的高采样率和定时分辨率;有2条通道实现100GS/s(33、25、20、16和12.5GHz型号);四通道同时使用性能;高达23GHz带宽;高达50GS/s实时采样率;高达500M样点记录长度,具有MultiViewZoom"sup--normal" data-sup="1" data-ctrmap=":1,"> [1]
DEH系统主要功能: 汽轮机转速控制;自动同期控制;负荷控制;参与一次调频;机、炉协调控制;快速减负荷;主汽压控制;单阀控制、多阀解耦控制;阀门试验;轮机程控启动;OPC控制;甩负荷及失磁工况控制;...
变频器的作用是改变交流电机供电的频率和幅值,因而改变其运动磁场的周期,达到平滑控制电动机转速的目的。变频器的出现,使得复杂的调速控制简单化,用变频器+交流鼠笼式感应电动机组合替代了大部分原先只能用直流...
数字荧光示波器1.2GHz带宽前置放大器设计
本文介绍了数字荧光示波器1.2GHz带宽前置放大器的设计方法。首先介绍了系统的总体设计,然后给出了各个模块的设计,主要包括无源衰减网络的设计、阻抗变换网络的设计以及数控增益放大器的设计这三个部分。经过分析证明,该前置通道放大器实现了示波器基本功能,各项功能均能达到指定要求。与传统前置模拟通道放大器相比,该模拟通道放大器具有更高的带宽、更小的插入损耗等优点。
数字荧光示波器1GHz前置放大器的设计
系统通过采用高速差分运算放大器、程控衰减阵列模块、射频双向模拟开关等芯片相结合的方式,实现了低阻50Ω带宽1 GHz(-3 dB),高阻1 MΩ带宽500 M(-3 dB)并实现了2 mV/div~5 V/div衰减量程,系统还实现了自动量程控制,直流电平自动位移调零控制,最大限度降低了整个系统的失真和漂移,经国家检测中心测试,主要技术指标达到国外同类产品先进水平。
数字荧光示波器作用强大可以完成复杂信号的捕获、显示、分析,加上灵活的角发方式和自动数字测量作用使其成为测量领域的佼佼者。常用的TDS3000系列采样率为1.25-5GS/s,带宽显100~500MHz,TDS500/700系列的采样率为2~4GS/s,带宽为0.5~2GHz.DPO有这样优越的性能,当然不会有低廉的价格。为充分发挥DPO的性能,它主要用于复杂信号弹的检测。
(1)视频应用环境的信号检测
这类测量领域面对的是由快速脉冲组成的长"帧信号",DSO为了捕获整个信号的包络,只能使用较慢的采样率,俚较慢的采样率会因缺少波形数据而产生混叠失真:ART示波器可显示波轮廓,但不具备测量和分析作用,DPO尤其适合对这类信号的检测。类似的信号如磁盘、光盘等到的读出信号。
(2)无线通讯设备中复杂数字调制信号的检测
这类信号的复杂程度表现为非周期性信号,ART示波器上只能得到无法辨认的模模糊糊的一条光带,DSO因存储深度有限难以提供有价值的信息,此时可发挥DPO的多幅波形捕获能力。
(3) 稀有事件重复频率的检测
这是DPO的数字荧光技术带来的突出性能,通过观察多幅波形中稀有事件的显示亮度就可知在某段时间内出现的频度,必要时甚至可直接调出三维数据库中的波形数据进行详细统计。 解读词条背后的知识
噪声带宽(noise bandwidth)是指对某一器件,由其输出功率-频率曲线下的面积,除以所关心噪声频率的功率幅度所得的商。
数字已调信号占有一定的带宽,噪声同样也有它的带宽。设信号为升余弦波形,码元速率fs,信号带宽2fs,接收滤波器输出的带通型噪声的功率谱密度Pn(f),在载频f0处噪声功率谱密度的最大值为N0。取带宽为B,如
在通讯和网络领域,带宽的含义又与上述定义存在差异,它指的是网络信号可使用的最高频率与最低频率之差、或者说是"频带的宽度",也就是所谓的"Bandwidth"、"信道带宽"--这也是最严谨的技术定义。
在100M以太网之类的铜介质布线系统中,双绞线的信道带宽通常用MHz为单位,它指的是信噪比恒定的情况下允许的信道频率范围,不过,网络的信道带宽与它的数据传输能力(单位Byte/s)存在一个稳定的基本关系。我们也可以用高速公路来作比喻:在高速路上,它所能承受的最大交通流量就相当于网络的数据运输能力,而这条高速路允许形成的宽度就相当于网络的带宽。显然,带宽越高、数据传输可利用的资源就越多,因而能达到越高的速度;除此之外,我们还可以通过改善信号质量和消除瓶颈效应实现更高的传输速度。
网络带宽与数据传输能力的正比关系最早是由贝尔实验室的工程师Claude Shannon所发现,因此这一规律也被称为Shannon定律。而通俗起见普遍也将网络的数据传输能力与"网络带宽"完全等同起来,这样"网络带宽"表面上看与"总线带宽"形成概念上的统一,但这两者本质上就不是一个意思、相差甚远。