选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

根吸水原理

根吸水原理

是指绿色植物依靠根从外界环境吸收水分的过程.根吸水主要在根尖进行,并以其中的根毛区吸水能力最大.根吸水的主要动力是由蒸腾作用通过散失水分所产生的拉力.根吸收水分与根吸收矿质元素,是相互联系的两个独立过程.外界环境中的矿质盐分一定要溶解于水中,才能进入根部。

由百度图片提供

查看详情

根吸水造价信息

  • 市场价
  • 信息价
  • 询价

吸水

  • 产地:昆明;品种:吸水石;规格:长×宽×高:1.5×1.5×0.8m
  • t
  • 金华石材
  • 13%
  • 昆明市西山区金华石材经营部
  • 2022-12-07
查看价格

吸水底阀

  • H42X-16 DN400
  • 开维喜
  • 13%
  • 上海开维喜阀门集团有限公司(杭州市厂商期刊)
  • 2022-12-07
查看价格

吸水

  • 品种:拖把;类型:拖把;功能:防尘;规格:38cm;
  • 儒阳
  • 13%
  • 重庆儒阳建筑工程有限公司
  • 2022-12-07
查看价格

吸水

  • 10×6×7
  • 耐特
  • 13%
  • 四川耐特橡塑有限公司
  • 2022-12-07
查看价格

吸水

  • 100#
  • 13%
  • 太原市百盛消防器材有限公司
  • 2022-12-07
查看价格

设备

  • 台班
  • 汕头市2011年3季度信息价
  • 建筑工程
查看价格

设备

  • 台班
  • 广州市2010年4季度信息价
  • 建筑工程
查看价格

设备

  • 台班
  • 广州市2010年2季度信息价
  • 建筑工程
查看价格

设备

  • 台班
  • 广州市2010年1季度信息价
  • 建筑工程
查看价格

设备

  • 台班
  • 韶关市2009年11月信息价
  • 建筑工程
查看价格

水原色沥青

  • 原色
  • 100m²
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2018-01-30
查看价格

吸水喇叭DN200

  • 吸水喇叭DN200
  • 1个
  • 3
  • 中高档
  • 含税费 | 含运费
  • 2017-11-30
查看价格

吸水

  • 吸水
  • 1台
  • 3
  • 中档
  • 不含税费 | 含运费
  • 2022-07-07
查看价格

喇叭吸水

  • 1.名称:喇叭吸水2.规格:DN200
  • 2个
  • 1
  • 品牌详见原档
  • 中高档
  • 含税费 | 含运费
  • 2022-11-09
查看价格

吸水喇叭口

  • 1.名称:吸水喇叭口2.规格:DN250
  • 66
  • 3
  • 迈克、上海冠龙、武汉大禹
  • 中档
  • 含税费 | 含运费
  • 2018-07-19
查看价格

根吸水作用

根具有固定植物,吸收输送水分和无机盐,贮藏营养物质及繁殖新植株的作用。

查看详情

根吸水特点

根吸水的特点:根部吸水主要是靠根尖的成熟区,成熟区有大量的根毛,从而大大增加了根吸水的表面积,提高了植物根部吸水的效率,即增加了单位时间内的吸水量。然后根部吸水的动力主要来源于叶子的蒸腾作用。而根部细胞吸水的动力是细胞液的浓度差。

查看详情

根吸水原理常见问题

查看详情

根吸水原理文献

回水原理图 回水原理图

回水原理图

格式:pdf

大小:39KB

页数: 1页

(1)供、回水控制 热水供水系统可满足各个用水口热水供应,保证洗浴时水量充足,可自 动实现连续供水。也可采用时间控制器和电磁阀,实现定时供水。 同时为保证各个用水点供水的温度(即开水龙头出热水) ,系统还配套 设置 1 套定温回水装置,在供水管路中最不利点水温低于设定温度,比如 40℃(可根据实际情况设定回差) 时,先后打开回水电磁阀和回水增压泵 (即 供水增压泵),把管内的冷水顶回到水箱,以保证打开水龙头就出热水,当 最不利点水温达到设定温度,回水增压泵和回水电磁阀先后停止运行。 若采用定时供水,可在每次供水前 20 分钟(时间可调)打开供、回水 电磁阀、回水增压泵直到供水开始关闭回水电磁阀。 热水工程回水原理见下图:

止水原理优缺点对比 止水原理优缺点对比

止水原理优缺点对比

格式:pdf

大小:39KB

页数: 11页

止水原理优缺点对比 一、止水条 1、止水原理: 遇水膨胀止水条是由高分子、 无机吸水膨胀材料与橡胶及助剂合成的具有自粘性 能的一种新型建筑防水材料。 止水条是靠吸水膨胀后与混凝土挤密,堵塞空隙来止水的。 规格尺寸一般为 20mm*30mm 或 50mm*50mm 。 2、优点: 施工方便,价格便宜。 3、缺点: 止水效果没有止水带、止水钢板好。 施工过程中不可预见的问题较多, 一是钢筋密不好放置; 二是时间过长, 吸潮膨 胀,影响效果;三是施工缝处不平整,接触不良。通常这种方法止水效果不是很 理想。 止水条安装时凹槽的留设, 大了不能有效固定, 小了镶嵌不到位,混凝土浇筑时, 在混凝土浮力作用下容易移位。 施工单位为了方便, 往往喜欢用止水条, 在基础浇筑完成时, 压在墙砼浇筑的表 面即可。 4、适用范围: 可用于地下无水的建筑, 一般用于建筑物的次要部位或要求不严的部位, 如地下 水位以

根系吸水根系吸水的动力

根系吸水有两种动力:根压和蒸腾拉力,后者较为重要。

根系吸水根压

植物根系的生理活动使液流从根部上升的压力,称为根压(Root Pressure)。根压把根部的水分压到地上部,土壤中的水分便不断补充到根部,这就形成根系吸水过程,这是由根部形成力量引起的主动吸水。

从植物茎的基部把茎切断,由于根压作用,切口不久即流出液滴。从受伤或折断的植物组织溢出液体的现象,称为伤流。

没有受伤的植物如处于土壤水分充足、天气潮湿的环境中,叶片尖端或边缘也有液体外泌的现象。这种从未受伤叶片尖端或边缘向外溢出液滴的现象,称为吐水。

根压的两种解释:

1、渗透论 根部导管四周的活细胞由于新陈代谢,不断向导管分泌无机盐和有机物,导管的水势下降,而附近活细胞的水势较高,所以水分不断流入导管;同样道理,较外层细胞的水分向内移动。

2、代谢论 持这种见解的人认为,呼吸释放的能量参与根系的吸水过程。

根系吸水蒸腾拉力

植物因蒸腾失水而产生的吸水动力叫做蒸腾拉力(Transpirational Pull)。

叶片蒸腾时,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,所以能从旁边细胞取得水分。同理,旁边细胞又从另外一个细胞取得水分,如此下去,便从导管要水,最后根部就从环境吸收水分。这种吸水完全是蒸腾失水而产生的蒸腾拉力所引起的。

查看详情

根系吸水根系吸水的途径

根系吸水的途径有3条,即质外体途径(apoplast pathway)、跨膜途径(transmem-brane pathway)和共质体途径(symplast pathway)。共质体途径和跨膜途径统称为细胞途径(cell ular pathway)。这3条途径共同作用,使根部吸收水分。

根系吸水质外体途径

质外体途径是指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,所以这种移动方式速度快。

根系吸水跨膜途径

跨膜途径是指水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜,故称跨膜途径。 

根系吸水共质体途径

共质体途径是指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。

查看详情

根系吸水影响根系吸水的土壤条件

根系通常生存在土壤中,所以土壤条件直接影响根系吸水。

根系吸水土壤中的可用水分

土壤的水分对植物来说并不是都能被利用的。根部有吸水的能力,土壤有保水的能力(土壤中一些有机胶体和无机胶体能吸附一些水分,土壤颗粒表面也吸附一些水分)。植物从土壤中吸水,实质上是植物和土壤争夺水分的问题。植物只能利用土壤中可用水分(available water)。土壤可用水分多少与土粒粗细以及土壤胶体数量有密切关系,粗沙、细沙、沙壤、壤土和黏土的可用水分数量依次递减。

根系吸水土壤通气状况

土壤通气不良,造成土壤缺氧,二氧化碳浓度过高,短期内可使细胞呼吸减弱,影响根压,继而阻碍吸水;时间较长,就形成无氧呼吸,产生和积累较 多的酒精,根系中毒受伤,吸水更少。作物受涝,反而表现出缺水现象,也 是因为土壤空气不足,影响吸水。

根系吸水土壤温度

低温能降低根系的吸水速率,其原因是:水分本身的黏性增大,扩散速率降低;细胞质黏性增大,水分不易通过细胞质;呼吸作用减弱,影响根压;根系生长缓慢,有碍吸水表面的增加。

土壤温度过高对根系吸水也不利。高温加速根的老化过程,使根的木质化部位几乎达到尖端,吸收面积减少,吸收速率也下降。同时,温度过高使酶钝化,影响根系主动吸水。

土壤溶液所含盐分的高低,直接影响其水势的大小。根系要从土壤中吸水,根部细胞的水势必须低于土壤溶液的水势。在一般情况下,土壤溶液浓度较低,水势较高,根系吸水;盐碱土则相反,土壤水分中的盐分浓度高,水势很低,作物吸水困难。施用化学肥料时不宜过量,特别是在沙质土,以免根系吸水困难,产生“烧苗”现象。

2.1 水分胁迫下的根系吸水

当作物受到土壤水分胁迫时,根据根系分布在遵循最小耗能原则的情况下,其根系吸水的补偿机制方面出现了3种情况,即线性模型、非线性模型和指数模型.线性模型代表是基于Feddes(1978)模型的Lai-Katul(2000)模型.另外,Hoogland和Feddes等(1981)、Prasad(1988)以及Hayhoe1988)充分考虑了土壤水分空间变化情况下的植物根系吸水在土壤剖面的动态分布.非线性模型一般用实际蒸散与潜在蒸散量之比来修正在水分胁迫条件下的根系吸水.指数模型有Dirksen(1985)、Jamieson模型(1999)和Adiku(2000)模型,最有影响力的就是Li和Jong等(2001)模型.在指数模型中引入一个附加参数,例如权重胁迫指数,既考虑植物根系分布又考虑土壤水分胁迫,此模型大大提高了对土壤水分的模拟精度,但对土壤水力特性不敏感,由于其太粗糙,一般只适合于大尺度的水文模型的应用。

2.2 水分和盐分共同胁迫下的根系吸水

盐分胁迫对根系吸水的影响主要通过土-根系统中的渗透势加以体现,一方面,考虑植物根系细胞膜对溶质的过滤;另一方面,考虑根系对溶质的吸收。30多年来,诸多学者就盐分对植物根系吸水的研究主要集中在对盐分胁迫的处理,主要集中在对根系吸水函数的修正,一是线性修正函数,二是非线性修正函数。

(1)线性修正函数.1973年Nimah和Hanks(1973)将土壤压力水势用压力水头和溶质渗透势代替,考虑了土壤溶质组成对根系吸水的影响.Feddes(1976)采用分段函数来表示根系吸水模型中的线性折算函数.Maas(1986)给出了土壤渗透势的分段函数,并且引入了根系饱和吸水的概念.此类模型缺乏合理的理论支撑,对土壤盐分的变化不敏感而不能正确估计在盐分胁迫下根系吸水实际情况。

(2)非线性折算函数.VanGenuchten和Hoff-man等(1984)提出了在盐分胁迫条件下的非线性S型和指数屈服响应函数.VanGenuchten(1987)考虑了根系吸水折算函数所对应的土壤水压力势与渗透势各自对根系吸水的贡献权重问题,并且提出了根系吸水折算函数中将水分胁迫与盐分胁迫因子的乘积计算方法.并首次提出了在盐分胁迫条件下根系吸水折算函数与屈服响应函数之间的对应关系,同时考虑了水分和盐分胁迫的准S型函数.VanGenuchten和Gupta(1993)通过研究发现,S型屈服响应函数对根系吸水的模拟要比Maas和Hoffman的线性函数精度高.Dirksen和Augusgtijn(1988)、Cardon(1992)和Dirksen(1993)对VanGenuchten(1987)的S型非线性函数进行了改进,并引入了压力势阀值和有效蒸散的根系区土壤水压力临界值,提出了在盐分和水分共同胁迫下的折算函数,通过研究发现,比Nimah-Hanks(1973)模型要好得多.Homaee(1999)、Homaee和Dirksen等(2001)相继对Dirksen-Augusgtijn模型(1988)的改进非线性模型又进行了修正,提出了折算因子达到最小时的最大土壤水压力和有效蒸散压力势最大临界值.后经过研究发现,在最大根系区压力势和最大折算函数压力势域与最大根系区压力和折算函数的有效蒸散最大临界值域两个断点几乎不存在.同时,VanDam(1997)和Dudley(2003)相继对根系吸水折算函数进行了各种修改与改进,影响较大的是基于Homaee(1999)和Homaee-Feddes(2001)模型的基本思路,Homaee等(2002)提出了较为全面的非线性根系吸水折算函数.

2100433B

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639