选择特殊符号
选择搜索类型
请输入搜索
1. 采用4h长周期切换方式,整机综合性能好。
2. 采用完全再生工艺、吸附剂能够彻底再生,因而吸附剂动态吸附量较大,设备经济性很好。
3. 再生加热采用环境空气,具有节能优势。
4. 多重联锁保护、报警,大大提高装置安全性、可靠性。
5. 出口露点稳定,有效保证压缩空气气体品质。
6. 设备集成一体,整机出厂。
1. 处 理 量:13 - 510m3/min
2. 工作压力:0.4 -1.0Mpa
3. 压力露点: - 40℃(PDP)
4. 系统压降:≤ 0.021Mpa
5. 耗 气 量:2%/0%
6. 切换周期:4h
7. 进气含油量 ≤0.1ppm(w)
8. 吸 附 剂:活性氧化铝
9. 电压 380V/3PH/50HZ
; Blower Pruge Regenerative Air Dryer
冷冻式干燥机是利用降温除水原理对压缩空气进行干燥,其露点一般在+5°C以上,多用于对压缩空气要求不高的场合; 吸附式干燥机是利用干燥剂吸附水分子的原理对压缩空气进行干燥,其露点可达-70°C以下,多用...
冷冻式干燥机是压缩空气净化设备里面非常重要的一环,按各种生产领域以及行业来区分是否在冷冻式干燥机后面添加吸附式干燥机。因为他们有一个先后关系,先冷凝除水(可除去压缩空气里面80%的水分)露点值达到+1...
吸干机分双塔和模块、模芯,双塔的话用国外的阿特拉斯这些品牌,但价格比较高。建议用贝腾模芯吸附式干燥机,处理效果还不错。
干燥机
2、控制器使用说明 2.1 参数设置 将面板左侧上方的拨动开关拨向左方 (设置位置) ,控制器处于设置状态。 此时左边三个 数码管显示参数代码号,右边四位数码管显示设置参数值。 2.1.1 设置参数代码号选择:按下“启动 /代码”按钮,则可以递增参数代码号。共十二 个参数代码( 0~11),可以循环选择。 2.1.2 设置参数值:当选定设置参数代码后,按下“停止 / 参数”按钮,可以递增设置参 数值,可以循环设置。此时,再按下“启动 / 代码”,可以递减设置参数值,可以循环设置。 设置完毕,将拨位开关拨向右方(运行位置) ,则设定值将被写入 E2PROM储存起来 ,即使断 电后仍能保留。如果设置值错误,则会显示 E0、E1和 E2,请重新设定参数。 2.1.3 设置参数代码和参数设置值说明: 2.2 时序图说明: 3、操作过程 3.1 开机前的检查 3
冷冻式干燥机
冷 冻 式 干 燥 机 结构紧凑 - 独特的将预冷器、蒸发器及预热器整合在 一起的,三合一耐腐蚀铝合金冷凝净化器设 计,大大减少了管道数量, 减小了体积和重 量。同时避免了传统材料造成的内部管道腐 蚀生锈引起的故障 高效换热和除水 - 预冷器和蒸发器内芯列管结构,充分利用 了空气流体学的原理, 显著提高了换热效率 - 高效气水分离器,除水效果显著,及时分 离 99%以上液态水 - 风冷冷凝器安装在顶部,特殊设计确保在 各种工况下达到很好的冷却效果 操作简便 - 操作面板简单直观 -“一键启动”,易于维护 - 结构紧凑,箱板拆卸方便 - 温度控制风机自动启停 - 压缩机运行受系统控制,得到安全保障 - 冷凝器顶部安装,不易堵塞,极大减 少了日常维护时间 冷干机性能参数 型号 处理量 电压 空气接口管径 外形尺寸( m 重 m3/min m3/hr V/ph/hz (进口 出口) 长
微热再生吸附式干燥机
一、变压吸附,再生微加热脱附干燥剂的吸收水分
二、微电脑控制,双塔自动切换,循环连续工作(可特殊定制:露点巡查显示、控制,远程控制)
三、结构合理,外形美观,安装,维修简便,性能优越,可靠
富氧鼓风(enrichment oxygen in blast fur-nace)是在高炉大气鼓风中加入工业氧,以提高鼓风含氧浓度,强化风口区燃料燃烧,从而提高生铁产量,它是一种高炉强化冶炼技术。
高炉鼓风系统效率提升
大、中型高炉所用的鼓风机中,大多采用汽轮机驱动的离心式压缩机和轴流式压缩机。近年来随着电机技术的不断发展,高炉鼓风机一般都采用大容量同步电动轴流式压缩机,这种压缩机的电气设备较多,耗电量大,但相比较汽轮机驱动方式投资较少。以某大型钢铁公司高炉鼓风站的数据为例,该高炉鼓风站由5 台全静叶可调轴流式高炉鼓风机组成,并由5 台功率为48MW 的同步电动机驱动,运行模式采用4 用1 备,担负着向全厂4 座高炉全年连续送风的重任,整个鼓风机站的电能消耗约为每年11亿度,约占到整个厂区总电耗的10%。根据某年运行数据统计得出,5台鼓风机电机耗电量为11.38 亿度,而鼓风机站总耗电量为11.64 亿度,占总耗电量的97.7%以上,可见鼓风机的耗电量巨大。
高炉鼓风机站所消耗的能源由数个辅助子系统组成,包括:鼓风制冷脱湿系统、鼓风富氧系统、鼓风除尘过滤系统以及送风管网系统等,这些辅助子系统的运行状况直接影响到鼓风机组的整体运行效率,对高炉鼓风系统能耗有较大的影响。这些因素包括:鼓风机本体的运行效率、除尘过滤及脱湿系统的阻力损失、脱湿效率以及管网输送阻力损失等。
对于高炉鼓风系统效率方面的分析研究,大部分是针对鼓风机送风量过大,出现放风,造成能量损失进行改造;或者是针对高炉鼓风机的防喘振控制策略进行研究。尤其是戚学锋等人进行了高炉鼓风机设备在运行过程中的寻优控制方法的研究,并在包头钢铁公司进行了应用,该方法的原理是在已获得鼓风机特性曲线的基础上,结合风机的效率—流量曲线,通过控制风机的转速和静叶角度,使风机能运行在具有较高运行效率和适宜的喘振裕度的工作点上。但该法仅是针对鼓风机设备本体,并未涉及到对周边子系统的分析和研究。而目前针对提高整个高炉鼓风系统的运行效率和节电潜力的研究是鼓风站节能降耗的一个重要研究课题。
鼓风系统效率影响因素分析
从以下两个方面阐述影响高炉鼓风系统运行效率的因素:
第一,结合高炉炼铁工艺要求对除尘过滤系统、制冷脱湿系统、管网送风系统等重要辅助系统进行运行状况分析,找出影响各自能耗的因素,提出节能运行建议。
第二,对影响鼓风机主机运行效率的因素,如过滤系统的阻力损失、管网阻力损失等问题进行分析研究,并提出调整改进措施,达到节约能源的目的。典型的高炉鼓风系统流程图见图1。
1、鼓风除尘过滤系统
(1) 自洁式空气过滤器应用
高炉鼓风进口端过滤器主要采用自洁式空气过滤器,过滤元件为刚性滤筒。空气通过粗滤筒过滤后,经由自洁式过滤器进行细过滤得到洁净空气,当滤筒内外压力差值达到设定值时,启动反吹系统,进行滤筒自洁清理。
高炉鼓风过滤器也有采用布袋式除尘过滤器的,过滤元件为细长的口袋。由于具有除尘效率高、结构简单、平时维护量小的特点,该类型过滤器得到迅速推广和应用。除尘效果良好,鼓风机运行近二十年,鼓风机叶片磨损较少。但由于自洁式过滤器的除尘性能更加优越,安装维护更加简便,将布袋过滤器更换为自洁式空气过滤器。自洁式空气过滤器是由鼓风机抽吸形成负压,过滤器吸入周围空气,经由粗滤筒将空气中悬浮较大物体进行粗过滤,空气中的粉尘在经过滤芯时,由于粉尘重力作用或静电作用以及颗粒碰撞接触作用被阻留在滤筒外,洁净空气经过文氏管加速后,由出口管送出。
(2)空气除尘过滤系统对鼓风效率的影响
高炉鼓风机高速旋转的叶轮或叶片,对吸入空气中的飘尘十分敏感,粉尘(直径≥4μm)对风机叶片的磨损是影响设备长期正常运行的主要原因之一。钢铁企业的空气中主要成分为粉尘颗粒,大气中所含的粗糙矿物尘粒及各种气体的混合物对鼓风机有以下危害:
1)对于前几级叶片,粉尘附着于叶片表面,容易对叶片造成点状腐蚀;
2)后几级叶片,空气温度升高,粉尘难于附着于叶片表面,而是随气流对叶片造成冲刷磨损;
3)由于上述因素影响,鼓风机风量降低,喘振线下移,有效运行范围缩小,风机效率降低,甚至被迫停机检修;
4)因自洁式除尘器运行阻力上升,会导致风机的运行点发生偏移,风机消耗功率随之增加。大型轴流式鼓风机揭缸检修时,发现鼓风机动叶(第一级)磨损厉害,原因是自洁式滤筒过滤器过滤颗粒直径较大。因此,在鼓风机机前配备有效的空气过滤器是很有必要的。
高炉鼓风机对空气过滤器的基本要求有:除尘效率高,在当地大气含尘量的情况下能满足高炉鼓风机
对粉尘含量的要求,同时流动阻力尽量小,此外还应考虑鼓风机周边空气不被严重污染,以及在低温天气或者空气湿度较大时,不会发生结冰或积灰等堵塞问题。一般自洁式过滤器滤筒初始压力差为200~300Pa,但当滤筒压差持续保持在1200Pa 以上时,鼓风机电耗增大,需更换滤筒,一般滤筒使用寿命为2 年。随着鼓风机运行时间增加,滤筒的过滤能力将逐步下降,滤筒附着的灰尘也逐渐难以清除,即使反吹系统一直在运行,滤筒的内外压差逐渐上升,引起过滤器阻力上升,使得风机耗电量增加。
(3)空气除尘过滤系统的节能措施
1)实时控制反吹间隔时间
自洁式过滤器设置的反吹周期是当滤筒压力差小于600Pa 时,每30s 反吹一次;压力差大于600Pa 时,每15s 反吹一次,一次反吹2 组滤筒。如果缩短反吹间隔时间,滤筒压力差将会迅速下降。由于反吹间隔时间缩短,压力差增长速度放缓。根据实验数据,滤筒压差由582Pa 至608Pa,反吹间隔时间为30s 时,需要24h;若将反吹间隔时间修改为15s,当滤筒压差达到608Pa,需要52h,即延长滤筒使用寿命28h。
2)人工吹扫与风机耗电量的关系分析
考虑到阴雨天气,导致大气湿度增加,严重影响自洁式空气过滤器的自洁效果,针对还未使用到两年滤筒压差却大于1200Pa的滤筒而言,可考虑采用人工吹扫方法对其进行拆卸清扫。为不影响鼓风机的正常运行,人工清扫采用的是不停机清扫,即每次只拆卸一组滤筒,其余滤筒正常运行,清扫完毕后,拆卸另一组滤筒继续清扫。
根据鼓风机运行数据统计,滤筒阻力(进出口压力差)每增加100Pa,在提供相同的鼓风风量的前提下,鼓风机有功功率要增加22kW,由此可得出人工清扫一次节约电耗为
ΔI =0.22∙ΔP∙T (1)
式中,ΔI 为人工清扫后鼓风机节约电量,kW·h;ΔP 为人工清扫后滤筒运行阻力下降值,Pa;T 为人工清扫后滤筒在允许压差下的运行周期,h。由于滤筒运行阻力随着运行时间而逐步上升,运行阻力上升趋势以及有效运行时间的长短与环境条件有密切关系,因此,上述计算出的节电量与实际状况略有差异。
3)滤筒材料选用
空气过滤器的滤筒材料:①透气性能好,以保证滤芯的流动阻力小;②滤筒结构简单,且有一定刚性强度,即能承受吸气时外部的压力,又能承受反吹时的冲击力;③滤筒材料孔隙度适当,滤清效率高,不易侵灰,以保证过滤效率和精度。
2、鼓风制冷脱湿系统
高炉除湿鼓风作为一项炼铁界所公认的节能技术,其不仅能有效减少高炉能量消耗,又有利于高炉生产的稳定,提高产品产量。鼓风制冷脱湿系统由制冷系统和脱湿系统两部分组成。一般采用在鼓风机吸入管侧装置冷却器、利用大型冷冻机冷却介质、再由介质冷却空气的间接冷冻脱湿的方法。空气经过冷却器冷却后使空气温度下降,从而脱去空气中的湿分,低温低湿的空气进入高炉鼓风机。产生了以下直接经济效益和间接经济效益。
(1)高炉顺行增产效益
高炉除湿鼓风后,鼓风机进口的空气密度提高,根据钢铁行业的经验数据显示,在相同风量的情况下,鼓风含湿量每降低1g/Nm3,高炉炼铁产量能够增加0.1%~0.5%。
(2)降低综合焦比
高炉鼓风除湿后,加热需要的燃料减少,根据经验可知,含湿量每降低1g/Nm3,可降低综合焦比0.8kg/t 铁;同时每吨铁水可多喷煤粉量1.7kg/t 铁,按煤代焦置换系数0.8 计算,每吨铁水可以减少焦炭用量1.36kg/t 铁。
(3)节约鼓风机能耗
高炉除湿鼓风后,鼓风机进口的空气密度提高,在高炉产量相同的情况下,可减少鼓风风量使其能耗下降,平均节能5%~10%。虽然除湿系统需要增加部分能耗,但其增加值小于鼓风能耗的下降值。
(4)脱湿冷凝水回收再利用
由于制冷脱湿系统是保证高炉鼓风送风湿度的主要辅机设备,同时也是所有的辅机中所占能耗比重最大的设备,因此针对制冷脱湿系统的运行特点提出节能措施,可以进一步减少鼓风机运行的系统整体能耗。
根据制冷脱湿系统的冷冻机和脱湿器的运行状况分析,以及制冷脱湿系统的运行特点,提出一个脱湿冷凝水回收再利用主要的节能措施。高炉鼓风系统采用的脱湿方法大多是冷凝脱湿,每年每台脱湿器在脱湿期内都会产生大量10℃左右的低温冷凝水。在夏季高温气候条件下,如果将这些冷凝水收集起来,用于办公室房间空调制冷,可以达到良好的节能效果。
3、送风管网系统
高炉鼓风机单体送风流程系统的组成主要有空气过滤器、脱湿器、制冷机、富氧混合器、鼓风机等,并配风道的阀门附件,如逆止阀、防阻塞阀、吐出阀、送风切换阀等,同时为了满足工艺和设备保护要求,旁路上配有防风阀门和急速减压阀等附件。
(1)送风流程能耗阻力分析
鼓风机在输送空气的过程中,必须要保证足够的出口风压来克服送风系统阻力损失、高炉炉料阻力损失,并且提供一定的高炉炉顶压力值。这些阻力直接影响鼓风机的能耗,因此,降低系统的阻力损失以减少鼓风机能耗具有实质性作用。
鼓风机单体送风流程管网布置较为简单,由于鼓风风量相当大,所以引起的风压阻力损失不容忽视。如果鼓风机进风口的流动阻力增大,将直接导致鼓风机进风负压升高,鼓风机实际工况点向非正常工况区域(喘振区域)偏移,鼓风机效率下降,造成电动机能耗增加。为了保证鼓风送风的稳定性,一般要求在输送管网中产生相对较小的阻力损失,其包括沿程阻力损失和局部阻力损失两部分。沿程阻力主要与管道长度和材料以及管道走向有关,局部阻力则与管网上的部件和装置有关,如:管道的变径、阀门、弯头等。根据送风管网的实际运行状况,计算管网阻力损
失时将送风管网系统分成两段进行分析研究。
第一管段:过滤器进口到鼓风机进口
第二管段:鼓风机出口到送风切换阀出口
由于鼓风采用的是机前富氧的方式,对吸入的空气进行加氧处理的,因此送风量在富氧混合器前后的风量将有所变化,又以富氧混合器为界将第一管段分成A 和B 两段分别进行阻力计算。同时根据富氧混合器的构造以及空气富氧的方式,可以认为富氧混合器所造成的压力损失忽略不计。
(2)送风管网节能措施
在整个管网阻力损失中脱湿器和空气过滤器所造成的局部阻力损失约占第一管段总损失的70%。对这两部分的基本构造进行优化设计是降低整个管网阻力损失的关键。对于一般装有脱湿装置的高炉鼓风系统而言,鼓风机全年向高炉送风可以分为脱湿期和非脱湿期两个阶段。一般高炉鼓风脱湿期为4~11 月份,其他月份由于空气湿度低,不需要进行脱湿处理。但是在实际的鼓风操作中,非脱湿期的空气仍然通过脱湿器,这样会造成很大的局部阻力损失,增加了鼓风机的耗电量。因此,可以在非脱湿期更改空气输送路径,通过安装旁通管道,使空气绕过脱湿器,这样可以减少脱湿器造成的约1000Pa的局部阻力损失。
对现有管路系统进行改造,加装旁通管路。空气绕过脱湿器,从旁通管道流向富氧混合器,在这段旁通管道上,空气流动的阻力损失主要是阀门和两个弯头引起的局部阻力损失,沿程阻力损失很小。根据往年2月份的平均数据进行计算得出,这段管路造成的阻力损失约为132Pa,而空气经过脱湿器所造成的局部阻力损失为851Pa,相差719Pa。根据高炉鼓风运行经验,当鼓风机吸入压力每降低100Pa,在输送相同的鼓风量的前提下,有功功率平均下降22kW 计,则以700Pa 的阻力损失计算,功率消耗下降值为154kW。若以单台鼓风机在非脱湿期内(按4个月算)全天连续运行计算,则可以减少鼓风机耗电量约45万kW·h,节省电费(按0.6元/kW·h 计算)约为27万元。因此,在现有送风管道中,加装一个旁通管路,在非脱湿期将旁通阀门打开,用挡板关闭空气过滤器和脱湿器之间的流通空间,让过滤后的空气直接从旁通管路流向富氧混合器,以减少鼓风机能耗,这个节能改造措施是经济可行的。
结论
通过对高炉鼓风辅机系统(主要针对自洁式过滤器、鼓风脱湿装置)以及管路送风系统阻力的计算分析,从理论上对能量的损耗进行推理和计算,寻找出流程上耗能大和能量损失大的因子,并以此为依据,进行理论上的优化,为进一步挖掘高炉鼓风系统的节能潜力,提出可行的优化和改造方案。相关结论如下:
1)空气除尘过滤系统:通过对除尘过滤系统运行数据的分析计算,并且对比反吹间隔时间与滤筒使用寿命和单位时间内风机电耗的关系,提出反吹间隔时间的最佳值,即滤筒压力差小于600Pa时,反吹间隔时间为14s,滤筒压力差大于600Pa 时,反吹间隔时间为5s。同时可采用人工清扫滤筒的方式来延长滤筒使用寿命。
2)制冷脱湿系统:针对冷凝脱湿特性,提出冷凝水回收再利用的节能措施。经计算分析可得,夏季脱湿器每天每小时共产生10℃冷水约为22.56t,若用于夏季空调制冷可供约1300m2的办公室内区使用。
3)鼓风机单体送风流程系统:通过管网阻力计算,可以得出鼓风机机前管网阻力损失偏大,机后的阻力损失在理论计算范围之内,因此对于降低机前鼓风阻力损失是降低整个管网系统的关键,提出在现有管网系统中加装旁通管路的节能改造措施,可以为鼓风站每年节电约45万kW·h,节省电费约为27万元。 2100433B