选择特殊符号
选择搜索类型
请输入搜索
钢筋混凝土的发明出现在近代,通常认为法国园丁约瑟夫·莫尼尔(en:Joseph Monier(英文))于1849年发明钢筋混凝土并于1867年取得包括钢筋混凝土花盆以及紧随其后应用于公路护栏的钢筋混凝土梁柱的专利。1872年,世界第一座钢筋混凝土结构的建筑在美国纽约落成,人类建筑史上一个崭新的纪元从此开始,钢筋混凝土结构在1900年之后在工程界方得到了大规模的使用。1928年,一种新型钢筋混凝土结构形式预应力钢筋混凝土出现,并于二次世界大战后亦被广泛地应用于工程实践。钢筋混凝土的发明以及19世纪中叶钢材在建筑业中的应用使高层建筑与大跨度桥梁的建造成为可能。
目前在中国,钢筋混凝土为应用最多的一种结构形式,占总数的绝大多数,同时中国也是世界上使用钢筋混凝土结构最多的地区。其主要原材料水泥产量已于2010年达到18.82亿吨,占世界总产量70%左右。
钢筋混凝土之所以可以共同工作是由它自身的材料性质决定的。首先钢筋与混凝土有着近似相同的线膨胀系数,不会由环境不同产生过大的应力。其次钢筋与混凝土之间有良好的粘结力,有时钢筋的表面也被加工成有间隔的肋条(称为变形钢筋)来提高混凝土与钢筋之间的机械咬合,当此仍不足以传递钢筋与混凝土之间的拉力时,通常将钢筋的端部弯起90度弯钩。此外混凝土中的氢氧化钙提供的碱性环境,在钢筋表面形成了一层钝化保护膜,使钢筋相对于中性与酸性环境下更不易腐蚀。
混凝土是水泥(通常硅酸盐水泥)与骨料的混合物。当加入一定量水分的时候,水泥水化形成微观不透明晶格结构从而包裹和结合骨料成为整体结构。通常混凝土结构拥有较强的抗压强度(大约 3,000 磅/平方英寸, 35 MPa)。但是混凝土的抗拉强度较低,通常只有抗压强度的十分之一左右,任何显著的拉弯作用都会使其微观晶格结构开裂和分离从而导致结构的破坏。而绝大多数结构构件内部都有受拉应力作用的需求,故未加钢筋的混凝土极少被单独使用于工程。
相较混凝土而言,钢筋抗拉强度非常高,一般在200MPa以上,故通常人们在混凝土中加入钢筋等加劲材料与之共同工作,由钢筋承担其中的拉力,混凝土承担压应力部分。例如在图2简支梁受弯构件中,当施加荷载P时,梁截面上部受压,下部受拉。此时配置在梁底部的钢筋承担拉力(4),而上部阴影区所示混凝土(2)承受压力(3)。在一些小截面构件里,除了承受拉力之外,钢筋同样可用于承受压力,这通常发生在柱子之中。钢筋混凝土构件截面可以根据工程需要制成不同的形状和大小。
同普通混凝土一样,钢筋混凝土在28天后达到设计强度。
钢筋混凝土的发展历史钢筋混凝土的发明出现在近代,通常为人认为发明于1848年。1868年一个法国园丁, 获得了包括钢筋混凝土花盆,以及紧随其后应用于公路护栏的钢筋混凝土梁柱的专利。1872年,世界第一...
具体的情况应该说出来啊
1:所谓的“简支梁”,通俗地讲也就是简单地支在那儿的意思,梁的两个端点是简单地搁支在两个支点上的。比如,梁上要做墙,梁两头是240*240的柱子,梁的钢筋不锚固直接伸入柱子里”,就是一个典型的简支梁。...
钢筋混凝土中的受力筋含量通常很少,从占构件截面面积的1%(多见于梁板)至 6%(多见于柱)不等。钢筋的截面为圆型。在美国从0.25至1英尺,每级1/8英尺递增;在欧洲从8至30毫米,每级2毫米递增;在中国大陆从3至40毫米,共分为19等。在美国,根据钢筋中含碳量,分成40钢与60钢两种。后者含碳量更高,且强度和刚度较高,但难于弯曲。在腐蚀环境中,电镀、外涂环氧树脂、和不锈钢材质的钢筋亦有使用。
在潮湿与寒冷气候条件下,钢筋混凝土路面、桥梁、停车场等可能使用除冰盐的结构则应使用环氧树脂钢筋或者其他复合材料混凝土,环氧树脂钢筋可以通过表面的浅绿色涂料轻松识别。
钢筋锈蚀与混凝土的冻融循环
钢筋锈蚀与混凝土的冻融循环会对混凝土的结构造成损伤。当钢筋锈蚀时,锈迹扩展,使混凝土开裂并使钢筋与混凝土之间的结合力丧失。当水穿透混凝土表面进入内部时,受冻凝结的水分体积膨胀,经过反复的冻融循环作用,在微观上使混凝土产生裂缝并且不断加深,从而使混凝土压碎并对混凝土造成永久性不可逆的损伤。
在潮湿与寒冷气候条件下,对钢筋混凝土路面、桥梁、停车场等可能使用除冰盐的建筑结构物,应使用环氧树脂钢筋或者热浸电镀、不锈钢钢筋等材料作为加强筋。环氧树脂钢筋可以通过表面的浅绿色涂料轻松识别。更便宜的办法是使用磷酸锌作为钢筋的防锈涂料,磷酸锌与钙离子与氢氧根离子反应生成稳定的羟磷灰石。防水材料也用来保护钢筋混凝土,如夹层填入膨润土的无纺土工布。亚硝酸钙Ca(NO2)2作为缓蚀剂,按照相对于水泥重量1-2%的比例添加,可以防护钢筋的腐蚀。因为亚硝酸根离子是一种温和的氧化剂,与钢筋表面的亚铁离子(Fe)结合沉淀为不可溶的氢氧化铁(Fe(OH)3).
碳化作用
正确地说应该是叫碳酸化作用,习惯通称为碳化作用。混凝土中的孔隙水通常是碱性的,根据Pourbaix图,钢筋在pH值大于11时是惰性的,不会发生锈蚀。空气中的二氧化碳与水泥中的碱反应使孔隙水变得更加酸性,从而使pH值降低。从构件制成之时起,二氧化碳便会碳酸化构件表面的混凝土,并且不断加深。如果构件发生开裂,空气中的二氧化碳将会更容易进入混凝土的内部。通常在结构设计的过程中,会根据建筑规范确定最小钢筋保护层厚度,如果混凝土的碳化削弱了这一数值,便可能会导致因钢筋锈蚀造成的结构破坏。
测试构件表面的碳化程度的方法是在其表面钻一个孔,并滴以酚酞,没有碳化部分便会变成粉色,通过测定没有变色的砼的深度,便可得知碳化层的深度。
氯化腐蚀
氯化物, 包括氯化钠,会对混凝土中的钢筋腐蚀。因此,拌合混凝土时只允许使用清水。同样使用盐来为混凝土路面除冰是被禁止的。
碱骨料反应
碱骨料反应或碱硅反应,(Alkali Aggregate Reaction,简称AAR,或Alkali Silica Reaction,简称ASR)是指当水泥的碱性过强时,骨料中的非结晶硅成分(SiO2)溶解并游离在高pH (12.5 - 13.5) 的水中,与水泥中的氢氧根离子发生反应生成硅酸盐,与水泥中的氢氧化钙反应生成水合硅酸钙,引起混凝土的不均匀膨胀,导致开裂破坏。它的发生条件为(1)骨料中含有相关活性成分——非结晶的二氧化硅;(2)环境中有足够的氢氧根离子;(3混凝土中有足够的湿度,相对湿度大于75%。这种反应被称为混凝土之癌,不论是否加强了钢筋,混凝土中都会有此反应。例如,混凝土的大坝。
高铝水泥的晶体转变
高铝水泥对弱酸特别是硫酸盐有抗性,同时早期强度增长很快,具有很高强度和耐久性。在第二次世界大战后被广泛使用。但是由于内部水化物晶体的转型,其强度会随时间推移而下降,在湿热环境下更为严重。在英国,随着3起使用高铝预应力混凝土梁的屋顶的倒塌,这种水泥在当地于1976年被禁止使用,虽然后来被证明有制造缺陷,但禁令仍然保留。
硫酸盐腐蚀
地下水中的硫酸盐会与硅酸盐水泥反应生成具有膨胀性的副产品例如矾石(ettringite)或碳硫硅钙(thaumasitein)从而导致混凝土的早期失效。
钢板混凝土
钢板混凝土施工中,工人现场将钢板构件焊接,节省了绑扎钢筋的时间。而且钢板混凝土具有较大的刚度,因为钢板包裹在混凝土之外,拉应力是最大的。故而多用于超高层建筑。
纤维混凝土主要用于喷浆施工,但也可用于普通混凝土施工。钢纤维和玻璃纤维是最常用的纤维,其费用并不比人工绑扎钢筋混凝土贵多少。
碳纤维亦非常适用于加固混凝土,但价格高昂,故一般用于失效钢筋混凝土的加固补救措施。
钢筋混凝土
钢筋混凝土 1. 梁内箍筋有哪些作用? 箍筋一般沿梁纵向均匀布置,或分段均匀布置。其作用是: (1)箍筋和斜裂缝间混凝土块体一起共同抵抗由荷载产生的剪力; (2)箍筋可以限制斜裂缝的开展, 使斜裂缝上端有较多的剩余受压混凝土截面, 来抵抗由荷载产生的在该截面上的压力和剪力; (3)箍筋兜住纵向受拉钢筋,加强了纵筋的销栓作用; (4)箍筋能固定纵向受拉钢筋和上边缘架立钢筋(构造钢筋)的位置,构成钢 筋骨架; (5)箍筋可以防止纵向受压钢筋的侧向压屈。 2. 计算梁斜截面受剪承载力时应取哪些计算截面? (1)支座边缘处截面,该截面承受的剪力值最大; (2)受拉区弯起钢筋弯起点处的截面; (3)箍筋截面面积或间距改变处截面; (4)腹板宽度改变处截面。 3.影响斜截面受剪承载力的主要因素有那些? ①混凝土强度;②配箍率及箍筋强度;③剪跨比;④纵向钢筋配筋率;⑤加载方 式;⑥截面形式。 三、简答题
钢筋混凝土
1 8 钢筋混凝土构件的变形和裂缝宽度验算 一、选择题 1.进行变形和裂缝宽度验算时( ) A.荷载用设计值,材料强度用标准值 B. 荷载和标准值,材料强度设计值 C. 荷载和材料强度均用设计值 D. 荷载和材料强度用标准值 2.钢筋混凝土受弯构件的刚度随受荷时间的延续而( ) A. 增大 B. 不变 C. 减小 D. 与具体情况有关 3.提高受弯构件的刚度(减小挠度)最有效的措施是( ) A. 提高混凝土强度等级 B. 增加受拉钢筋截面面积 C. 加大截面的有效高度 D. 加大截面宽度 4.为防止钢筋混凝土构件裂缝开展宽度过大,可( ) A. 使用高强度钢筋 B. 使用大直径钢筋 C. 增大钢筋用量 D.
钢筋混凝土结构钢筋混凝土结构是指用配有钢筋增强的混凝土制成的结构。承重的主要构件是用钢筋混凝土建造的。包括薄壳结构、大模板现浇结构及使用滑模、升板等建造的钢筋混凝土结构的建筑物。用钢筋和混凝土制成的一种结构。钢筋承受拉力,混凝土承受压力。具有坚固、耐久、防火性能好、比钢结构节省钢材和成本低等优点。混凝土的收缩和徐变(蠕变)对钢筋混凝土结构具有重要意义。由于钢筋会阻碍混凝土硬化时的自由收缩,在混凝土中会引起拉应力,在钢筋中会产生压应力。混凝土的徐变会在受压构件中引起钢筋与混凝土之间的应力重分配,在受弯构件中引起挠度增大,在超静定结构中引起内力重分布等。混凝土的这些特性在设计钢筋混凝土结构时须加以考虑。由于混凝土的极限拉应变值较低(约为0.15毫米/米)和混凝土的收缩,导致在使用荷载条件下构件的受拉区容易出现裂缝。为避免混凝土开裂和减小裂缝宽度,可采用预加应力的方法;对混凝土预先施加压力(见预应力混凝土结构)。
实践证明,在正常条件下,宽度在0.3毫米以内的裂缝不会降低钢筋混凝土的承载能力和耐久性。在从-40~60°C的温度范围内,混凝土和钢筋的物理力学性能都不会有明显的改变。因此,钢筋混凝土结构可以在各种气候条件下应用。当温度高于60°C时,混凝土材料的内部结构会遭到损坏,其强度会有明显降低。当温度达到200°C时,混凝土强度降低30~40%.因此,钢筋混凝土结构不宜在温度高于200°C的条件下应用:当温度超过200°C时,必须采用耐热混凝土。
钢筋混凝土桥制造,见混凝土桥制造。
钢筋混凝土桥制造,见混凝土桥制造。 2100433B
钢、钢筋混凝土结构是指承重的主要构件是用钢、钢筋混凝土建造的。
简介2100433B