选择特殊符号
选择搜索类型
请输入搜索
在现实应用中,它可以被用作“光速摄像机”。科学家称它可以用于医疗成像,比如光学超声波应用。在摄像机不能记录重复活动的应用中,它可以用于捕捉光如何散射在物体上,分析其物理结构。另外,该摄像机系统未来还可能用于消费者的相机上,人为创造出柔光箱等其它昂贵演播室照明设备所产生的光照效果。
为了制作捕捉光子移动的视频,科学家使用了一台超高速扫描摄影机,该摄影机一般用于测定光强和光持续时间。不过这台摄影机会因为质子在电场中的偏转将画面分割成多个单维图像,所以制作出的视频实际上是上万亿个分离图像的组合。
美国麻省理工学院(MIT)媒体实验室最新开发出了一种光速摄像机 系统,每秒捕捉1万亿帧画面,可观察光子的运动轨迹。
白光摄像机和红外摄像机类似,都是提供夜间微光摄像、实现24小时监控的摄像机,其不同于红外摄像机的最大特点是夜间成像为彩色图像。 现多用于停车场,建筑物周界,小区等出入口,用于监控车辆等,另外可用于楼道...
可以的。定额需要补充设备费吧?
这个是不能的,没有这种外壳。最好别这么干,这么干不地道,生意不是这么做的,人要讲究,货真价实才是正道。XR260E这种业余级别的DV要拍好婚礼是很难的。你不如去买个二手的准专业的DV吧。像VG30E,...
新摄像机:佳能MiniDV数码摄像机系列
维普资讯 http://www.cqvip.com
网络摄像机跟监控摄像机的区别及数字摄像机
网络摄像机跟监控摄像机的区别及数字摄像机与模拟摄像 机的区别 网络摄像机跟监控摄像机的区别在于接口标准不同。 网络摄像机的接口为 RJ45 标准网络接口。可以使用网线直接与交换机连接。 视规格型号不同,监控摄像机有多种接口标准 .不能与网络直接连接。 1.模拟摄像机跟 PC摄像头形势上略同,用视频线就可以直接连接 DVR 进行使 用,是视频信号转模拟信号 2.DVR 基本上最大的作用就是录像,也可以报警,连接网络。所以你要想让外 地的人看到就可以用网络的方式, 申请一个广域网域名, 然后连接宽带就可以远 程观看实时图像了 3.矩阵主要实现多路监控图象的切换与控制,一端接模拟机, DVR,另一端接解 码卡上墙,后端接 IP存储,连接时也是用视频线 4.真正的网络摄像机 : 连接到网络,并分配 IP地址。一条标准的网线可同时传输多路图像。 内 嵌 GUI,可通过 IE访问和配置管理。 为安全起
超光速(faster-than-light,FTL或称superluminality)会成为一个讨论题目,源自于相对论中对于局域物体不可超过真空中光速c的推论限制,光速成为许多场合下速率的上限值。在此之前的牛顿力学并未对超光速的速度作出限制。而在相对论中,运动速度和物体的其它性质,如质量甚至它所在参考系的时间流逝等,密切相关,速度低于(真空中)光速的物体如果要加速达到光速,其质量会增长到无穷大因而需要无穷大的能量,而且它所感受到的时间流逝甚至会停止,所以理论上来说达到或超过光速是不可能的(至于光子,那是因为它们永远处于光速,而不是从低于光速增加到光速)。但也因此使得物理学家(以及普通大众)对于一些“看似”超光速的物理现象特别感兴趣。
物体要到光速需要无限能量,而在平行空间下无法超光速。
现已有科学家提出设想:将物体前方的空间压缩,将物体后方的空间扩大来超过光速。只是需要巨大的能量,现有科技也无法做到。
光在同一种均匀的介质中沿直线传播。
为了寻找光速的微小波动,研究人员认为可以在较大的宇宙尺度上寻找其痕迹,在一些极端而遥远的天文现象中观察光的速度性质,比如伽玛射线暴可以产生强大的脉冲辐射,并且能作用相当长的距离,在如此大的尺度上光速的波动是可以被检测到的。此外,马塞尔·尔本以及其他小组成员还建议使用镜子反射激光光速来验证光速是否是非恒定的理论,这个实验方法与著名的掩等测量光速实验有些类似,通过计算一束激光在反射镜中反弹的次数来验证光速是否恒定。2100433B
真空光速作为物理学上的重要常数,是科学家马塞尔·尔本研究的重点,由于光速的限制,超光速宇宙飞船是否能实现呢?
据国外媒体报道 ,众所周知,光速是物理学上的一个重要常数,爱因斯坦的相对论中认为物体的运动速度无法超过真空中的光速,但是一些科学家正在探索光速是否为非恒定的可能性,这一宇宙速度极限可能与空间真空性质有关。光的速度在宇宙学和天文学上都有明确的定义,光速不仅是电磁波的传播速度,同时也适用于万有引力的作用,在假设光速恒定的条件下,科学家又推出了许多结论,比如物理学上的无量纲数:精细结构常数(阿尔法)、定义电磁力的强度等。变化的光速会改变分子键的性质以及核物质的密度。
光速恒定的前提也与宇宙的大小存在关联,非恒定的光速可能导致宇宙的收缩,但光速是宇宙中任何物体都不可能超过的速度。在2013年3月份,欧洲物理学期刊D发表了两篇关于光速的论文,研究人员试图从宇宙空间的量子特性角度寻找光速的奥秘,两篇论文都提出了不同的光速作用机制,认为在一个假设出现改变的前提下,光速可能出现改变,但是这样的空间并不是“空”的,而是充满了虚拟粒子的巨大“宇宙汤”。
由于光速被认为是无法超越的,而且星系之间有着巨大尺度的空间,因此科学家提出了多种超光速旅行的方法,比如一种被称为“时空波”的技术可让星际飞船以“冲浪”的方式实现超光速旅行。到目前为止,科学家对曲速驱动的方式几乎一无所知,未来的太空飞船会是何种模样也是个未知数,曲速飞船背后的物理基础纯粹是理论上的认识,而且还需要提供大量的能量源。
来自法国巴黎第十一大学物理学家马塞尔·尔本在他的论文中提到,看上去似乎是宇宙真空的环境通常被假设为空的空间,量子物理学定律在粒子尺度上可“规范”亚原子粒子等的行为,我们所说的空的空间实际上是充满了基本粒子,比如夸克等,这些虚粒子使得真空环境出现微小的变化,从而决定了光速可能不是常数,应该是随着虚粒子波动出现一定程度的改变。宇宙中的虚粒子是无法被直接探测到的,但是它们在量子物理学中确是存在的,从量子水平上来看,空的宇宙空间并非是虚空,其中充满了基本粒子对,比如夸克和反夸克,它们与自己对应的粒子总是呈现配对的关系,当物质与反物质粒子碰撞时就会发生湮灭。
光子在宇宙空间中穿梭时,可与虚粒子发生相互作用,对此物理学家马塞尔·尔本和他的同事们提出了虚粒子能量可能使光速发生改变的理论,由于虚粒子与光子之间的相互作用存在随机的特点,因此光子的移动速度也会随该影响的作用而出现变化。对于光速非恒定的理论假设,马塞尔·尔本通过本项研究提出了在量子理论框架下的介电常数和磁导率,认为光速的非恒定需要这两个因素的作用,而且真空中单位体积的虚粒子数量与光子的传播速度存在关联。凭借着先进的观测仪器,科学家们已经精确测量了光速,即便虚粒子对光速构成了影响,那么这样的影响也应该是非常微小的。