选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 建设工程百科

高温气冷堆核动力装置

用氦气作冷却剂,出口温度高的核反应堆。高温气冷堆采用涂敷颗粒燃料,以石墨作慢化剂。堆芯出口温度为850~1000℃,甚至更高。核燃料一般采用高浓二氧化铀,亦有采用低浓二氧化铀的。根据堆芯形状,高温气冷堆分球床高温气冷堆和棱柱状高温气冷堆。高温气冷堆具有热效率高(40%~41%),燃耗深(最大高达20MWd/t铀),转换比高(0.7~0.8)等优点。由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。

高温气冷堆核动力装置基本信息

高温气冷堆核动力装置高温气冷堆特点

高温气冷堆核动力装置安全性好

高温气冷堆是国际核能界公认的一种具有良好安全特性的堆型。三里岛核事故后世界核反应堆安全性改进的趋势,其堆芯融化概率有了显著的改进。目前世界上的核电厂堆芯融化概率均能达到 “满足要求的电厂”的水平,而且一些核电厂达到了“优异安全性电厂”的水平。美国电力研究所(EPRI)制定的《电力公司用户要求》文件提出的先进轻水堆的堆芯融化概率设计要求为10/堆.年。模块式高温气冷堆(MHTR)为革新型的堆型,其估计的堆芯熔化概率低于10/堆.年,远小于先进轻水堆堆芯熔化概率的要求 。

高温气冷堆采用优异的包覆颗粒燃料是获得其良好安全性的基础。铀燃料被分成为许多小的燃料颗粒,每个颗粒外包覆了一层低密度热介碳,两层高密度热介碳和一层碳化硅。包覆颗粒直径小于1mm,包覆颗粒燃料均匀弥散在石墨慢化材料的基体中,制造成直径为6cm的球形燃料元件(见图3)。包覆层将包覆颗粒中产生的裂变产物充分地阻留在包覆颗粒内,实验表明,在1600℃的高温下加热几百小时,包覆颗粒燃料仍保持其完整性,裂变气体的释放率仍低于10-4。高温气冷堆具有如下的基本安全特性:

1.1 反应性瞬变的固有安全特性在整个温度范围内,高温气冷堆堆芯反应性温度系数(燃料和慢化剂温度系数之和)均为负,具有瞬发效应的燃料温度系数也为负。因此,在任何正反应性引入事故情况下,堆芯均能依靠其固有反应性反馈补偿能力,实现自动停堆。高温气冷堆正反应性引入事故主要有:

①控制棒误抽出;

②蒸汽发生器发生破管,水进入堆芯造成慢化能力增强引入正反应性事故;

③一回路风机超速转动,冷却剂热端平均温度下降引入的正反应事故等。

事故分析的结果表明,在发生上述正反应性引入事故条件下,堆功率上升导致燃料元件的温度升高,但负反应性温度系数能迅速抑制其功率的上升,燃料最高温度远低于燃料元件最高温度限值。

1.2 余热载出非能动安全特性模块式高温气冷堆堆芯的热工设计时考虑了在事故工况下堆芯的冷却不需要专设的余热冷却系统,堆芯的衰变热可籍助于导热、对流和辐射等非能动机制传到反应堆压力容器外的堆腔表面冷却器,再通过自然循环,由空气冷却器将堆芯余热散发到大气(最终热阱)中。

当发生一回路冷却剂流失的失压事故时,堆芯的余热已不可能由主传热系统排出,只能依靠上述的非能动余热载出系统将堆芯衰变热载出,这样必然使堆芯中心区域的燃料元件温度升高。为了使堆芯燃料元件的最高温度限制在1600℃的温度限值内,模块式高温气冷堆堆芯功率密度和堆芯的直径将受到限制。

模块式高温气冷堆余热非能动载出功能的实现基本上排除了发生堆芯熔化事故的可能性,具有非能动的安全特性。

1.3 阻止放射性释放的多重屏障纵深防御和多重屏障是所有核电厂的基本安全原则。作为模块式高温气冷堆第一道屏障的燃料元件,在所有运行和事故工况下,堆芯燃料元件的最高温度限制在1600℃内。在此温度以下,热解碳层和致密的碳化硅包覆仍保持完整性,能使气态和金属裂变产物几乎完全被阻留在包覆燃料颗粒内。而且裂变材料被大量分散到许多小的燃料颗粒内,独立形成屏障,具有很高的可靠性。

一回路的压力边界是防止放射性物质释放的第二道屏障。一回路的压力边界由以下几个压力容器所组成:反应堆压力容器,蒸汽发生器压力容器,以及连接这两个压力容器的热气导管压力容器。这些压力容器发生贯穿破裂的可能性可以排除。

由于在任何工况下不会发生燃料元件温度超过1600℃而使裂变产物大量释放的事故,而且在正常运行工况下一回路冷却剂的放射性水平很低,故在发生失压事故时,即使一回路冷却剂全部释放到周围环境中,对周围环境造成的影响也是很小的。因此,在模块式高温气冷堆的设计中不设置安全壳,而采用“包容体”的设计概念。“包容体”不同于安全壳,无气密性和承全压的要求,无需喷淋降压和可燃气体控制等功能,系统大为简化。

高温气冷堆的“包容体”功能是由具有一定密封性能的一回路舱室来实现的。在10kPa压差下的泄漏率小于10-2/天。在正常运行工况下,由排风系统保持一回路舱室的负压,防止一回路舱室内放射性物质向反应堆建筑内扩散,排风经过滤后由烟囱排出;当发生一回路冷却剂失压严重事故,一回路舱室中的压力超过10kPa时,自动打开事故排风管道的爆破膜,放射性物质不经过滤直接由烟囱排向大气。由于直接释放放射性的后果并不严重,加之一回路舱室内压力经短时间后立即下降到正常压力,系统又恢复经过滤排出,这样可以防止事故过程中大量放射性裂变物质直接向环境的释放,避免了大量放射性释放的风险性。

高温气冷堆核动力装置发电效率可提高

模块式球床型高温气冷堆采用了余热非能动载出的特性,虽大大地增强了安全性,但是其单堆的功率受到了很大的限制。由于球床型高温气冷堆可以提供950℃的高温氦气,充分利用其高温氦气的潜力获得更高的发电功率是提高其经济竞争力的主要发展方向。氦气透平直接循环方式是高温气冷堆高效发电的主要发展方向。

南非ESKOM公司设计的高温气冷堆核电厂即采用了氦气透平直接循环方式[1,2],由一回路出口的高温氦气冷却剂直接驱动氦气透平发电,反应堆压力为7MPa,氦气出口温度为900℃,高温氦气首先驱动高压氦气透平,带动同轴的压缩机,再驱动低压氦气透平,带动另一台同轴的压缩机,最后驱动主氦气透平,输出电力。经过整个循环,氦气的压力将降到2.9MPa,温度降为571℃。为了将氦气加压到反应堆一回路的入口压力,需先经过回热器和预热器冷却到27℃后,再经两级压缩机后升压到7MPa,而后回到加热器的另一侧加热到558℃,回到堆芯的入口,其流程见图5所示。该循环方式发电效率可达到47%。

该循环系统的主要优点为:系统简单,全部电力系统都集成在同轴相连的三个压力容器内,造价低;避免了堆芯进水事故的可能性;热力循环效率高。

高温气冷堆核动力装置热循环方式

氦气透平直接循环方式是高温气冷堆高效发电的发展方向。但是,目前这项技术需要研究开发的项目较多,主要有:

①研制高质量、低释放率的燃料元件(以保证进入透平发电系统的放射性水平很低);

②研制立式氦气透平技术,包括:磁力悬浮轴承、停机擎动轴承以及在高温氦气氛下相接触金属表面的处理等相关技术;

③研制高效(98%)的板翅式回热器技术等。

从技术可行性角度,目前考虑的替代氦气热力循环方式还有以下两种方式:

3.1 直接联合循环方式

循环流程如图6所示,6.9MPa的900℃高温氦气先驱动一个氦气压缩机透平,带动同轴的压缩机,再驱动主发电氦气透平,向外输出电力。出口的氦气再通过一直流蒸气发生器,加热另一侧的水,使之产生蒸汽。产生的蒸汽推动蒸汽透平发电机,向外输出功率。氦气经直流蒸气发生器后由压缩机加压到7.0MPa,183℃,回到堆芯入口。该系统的氦气透平和蒸汽透平联合循环发电效率可达48%。

这个循环系统的主要优点:不需要采用高效回热器,避开了一个技术难点。但是,由于采用氦气"para" label-module="para">

3.2 间接联合循环

图7给出的间接联合循环流程为:反应堆出口的900℃高温氦气经过中间热交换器(加热二次侧的氮气),冷却到300℃,再经过氦风机回送到堆芯的入口。二次侧的氮气经中间热交换器加热到850℃,实现气体透平和蒸汽透平的联合循环。该循环的发电效率为43.7%。

由于采用氮气作工质,可以采用成熟的气体透平技术,在现有技术基础条件下具有更好的可行性。但是投资成本增加,也不能排除堆芯进水事故的可能性。

从上述循环流程的比较可以看出,氦气热力循环方式都可以得到很高的发电效率,根据技术的发展水平,可以选择合适的循环流程。

高温气冷堆核动力装置优点及主要因素

模块式高温气冷堆由于采用非能动余热载出方式,其单堆的输出功率受到限制,最大热功率只能达到200~260MW。其输出电功率只能达到100MW规模容量,相比压水堆核电厂,其容量规模较小。但是,南非ESKOM公司设计的100MW发电容量的高温气冷堆的经济分析结果表明,与大容量的压水堆核电厂相比较,其发电成本有很好的竞争力,而且可以与当地廉价的煤电成本相比较。主要的因素有以下几点:

①高的发电效率:其发电效率比压水堆核电厂高出约25%。

②建造周期短:100MW容量高温气冷堆采用模块化建造方式,建造周期可缩短到两年,与压水堆核电厂5~6年的建造周期相比,降低了建造期的利息,可使建造比投资减少20%左右;

③系统简单:高温气冷堆具有的非能动安全特性使系统大为简单,不必设置压水堆核电厂中的堆芯应急冷却系统和安全壳等工程安全设施,节省了建造投资。

④安全性高:具有固有安全特性,在最严重事故情况下不会发生堆芯融化等传统风险 。

查看详情

高温气冷堆核动力装置造价信息

  • 市场价
  • 信息价
  • 询价

自动门动力装置

  • OZP01
  • 欧尼克
  • 13%
  • 北京乾圳工程技术有限公司
  • 2022-12-08
查看价格

核动力(松柏专用)

  • 品种:核动力(松柏专用);规格:350ml×24瓶;
  • 华农
  • 13%
  • 长春市绿海园林机械有限公司
  • 2022-12-08
查看价格

自动重合装置

  • 品种:自动重合装置;系列:微型断路器和剩余电流动作断路器附件;安装方式及说明:F200;电压:12-30V AC12-48V DC;规格:F
  • ABB
  • 13%
  • 西安赢家电器设备有限公司
  • 2022-12-08
查看价格

自动重合装置

  • 品种:自动重合装置;系列:微型断路器和剩余电流动作断路器附件;安装方式及说明:F200;电压:230VAC;规格:F2C-ARH;
  • ABB
  • 13%
  • 西安赢家电器设备有限公司
  • 2022-12-08
查看价格

驱动装置

  • QQP20/6
  • 瓶组
  • 广州兴进
  • 13%
  • 广州兴进消防设备有限公司
  • 2022-12-08
查看价格

液压柜(动力系统)

  • 台班
  • 广州市2011年1季度信息价
  • 建筑工程
查看价格

液压柜(动力系统)

  • 台班
  • 广州市2010年4季度信息价
  • 建筑工程
查看价格

液压柜(动力系统)

  • 台班
  • 广州市2009年4季度信息价
  • 建筑工程
查看价格

液压柜(动力系统)

  • 台班
  • 广州市2009年3季度信息价
  • 建筑工程
查看价格

液压柜(动力系统)

  • 台班
  • 广州市2007年9月信息价
  • 建筑工程
查看价格

升降动力装置

  • 1.配套升降固定支架,满足水下工况条件,船舶级防腐,自锁抗扭,含潜水安装 (方天伟信,整体升降浮台为专利成套设备,升降动力装置为水下设备,防水等级IP68)
  • 2套
  • 1
  • 方天伟信(定制)、北京金瀑布、OASE
  • 高档
  • 含税费 | 含运费
  • 2021-06-29
查看价格

升降动力装置

  • 11.配套升降固定支架,满足水下工况条件,船舶级防腐,自锁抗扭,含潜水安装,1.5KW (方天伟信,整体升降浮台为专利成套设备,升降动力装置为水下设备,防水等级IP68)
  • 2套
  • 1
  • 方天伟信(定制)、北京金瀑布、OASE
  • 高档
  • 含税费 | 含运费
  • 2021-06-29
查看价格

升降动力装置

  • 7.5KW,同漂浮主体结构配套1.配套升降固定支架,满足水下工况条件,船舶级防腐,自锁抗扭,含潜水安装
  • 2套
  • 2
  • 中高档
  • 含税费 | 含运费
  • 2020-08-21
查看价格

升降动力装置

  • 1.5KW,同漂浮主体结构配套11.配套升降固定支架,满足水下工况条件,船舶级防腐,自锁抗扭,含潜水安装,1.5KW
  • 2套
  • 2
  • 中高档
  • 含税费 | 含运费
  • 2020-08-21
查看价格

升降动力装置

  • 1.5KW,同漂浮主体结构配套11.配套升降固定支架,满足水下工况条件,船舶级防腐,自锁抗扭,含潜水安装,1.5KW
  • 2套
  • 1
  • 中高档
  • 含税费 | 含运费
  • 2020-08-09
查看价格

高温气冷堆核动力装置实际应用

10兆瓦高温气冷实验堆:

在国家“863”计划的支持下,自上世纪八十年代中期,中国开展了10MW高温气冷实验堆的研究、开发,于2000年12月建成临界,2003年1月实现满功率并网发电, 中国对高温气冷堆技术的研发取得了突破性成果,基本掌握了核心技术和系统设计集成技术。这一科技成果在国内外引起广泛的影响,使我国在高温气冷堆技术上处于国际先进行列。2006年1月,国务院正式发布的“国家中长期科学和技术发展规划纲要(2006——2020年)”中,将“大型先进压水堆和高温气冷堆核电站示范工程”列为国家重大专项。

第四代先进核能系统:

第四代核能系统国际论坛(GIF)于近日正式发布2013年度报告。年报涵盖了GIF成员国所取得的研发进展、超高温气冷堆、钠冷快堆、超临界水冷堆、气冷快堆、铅冷快堆、熔盐堆等6个系统的进展报告。[1] 国际上提出了“第四代先进核能系统”的概念,这种核能系统具有良好的固有安全性,在事故下不会对公众造成损害,在经济上能够和其它发电方式竞争,并具有建设期短等优点,高温气冷堆是有希望成为第四代先进核能系统的技术之一。

我国高温气冷堆的研究发展工作始于70年代中期,主要研究单位是清华大学核研院。值得一提的是,建成的首座高温气冷堆的压力壳直径4.7米,高12.6米,重150吨,是中国自己设计和制造的迄今体积最大的核安全级压力容器。蒸汽发生器直径2.9米,高11.7米,重30吨,堆内有约13000个零部件,总重量近200吨。这些设备的制造成功,使中国成为少数几个能够加工制造高温气冷堆关键设备的国家之一,为高温气冷堆的国产化做出了重要贡献。

查看详情

高温气冷堆核动力装置常见问题

查看详情

高温气冷堆核动力装置文献

球床式高温气冷堆球流混流影响的机理 球床式高温气冷堆球流混流影响的机理

球床式高温气冷堆球流混流影响的机理

格式:pdf

大小:340KB

页数: 4页

球床高温气冷堆球流运动存在由于随机扰动引起的混流现象,它对于功率分布等堆芯关键参数有影响。通过开发工具、定量分析,发现其影响较小,而多次通过的燃料循环方式有效降低堆芯关键参数由于燃料球随机运动而造成的计算不确定性。球流混流使得堆芯不同区域内不同价值的核燃料球实现交混,对比分析堆芯各区域核密度及燃料球燃耗深度变化结果表明:混流效应使堆芯各区域核密度发生变化,但球床式高温气冷堆堆芯燃料球分布和运动使得堆芯各区域核密度差异不大,而多次通过使此差异更小;因此混流效应使得各区域核密度变化很小,进而对堆芯关键参数影响很小。

中国高温气冷堆核电站示范工程完成开工准备 中国高温气冷堆核电站示范工程完成开工准备

中国高温气冷堆核电站示范工程完成开工准备

格式:pdf

大小:340KB

页数: 1页

"十一五"期间,"大型先进压水堆及高温气冷堆核电站"项目获得一系列重要进展:大型先进压水堆联合科研体系基本成型,建设1座200 MW的高温气冷堆核电站示范工程,工程现场已全面完成开工准备。中国高温气冷堆的功率密度是压水堆的1/30,产生1 000 MW核裂变能的压水堆反应堆堆芯体积约30 m3,

核动力装置用泵内容简介

《核动力装置用泵》根据核动力装置用泵的特点和种类,有选择、有侧重地编著了本书。在详细介绍离心泵基本理论的基础上,介绍了核动力装置用的一回路主冷却剂泵、二回路给水泵、凝结水泵和循环水泵,并简要介绍了离心泵之外的其他类型泵的结构和工作原理。

《核动力装置用泵》可作为高等院校核工程专业本科生的教材,也可供从事核动力工作的人员使用和参考。

查看详情

核动力装置用泵作者简介

高璞珍,自1992年起在哈尔滨工程大学工作,从事核动力装置方面的教学和科研。1992年毕业于哈尔滨船舶工程学院工程热物理专业,获硕士学位。2000年获轮机工程专业工学博士学位。2000年—2001年去法国Grenoble的INPG大学LEGI实验室,进行微通道内流动与传热特性研究。2002年—2003年去香港理工大学进行火灾安全工程合作研究。多年来主要参加核动力装置热工水力特性方面的理论研究和实验研究。获省部级科技进步三等奖4项,发表了50余篇论文,SCI索引6篇、EI索引19篇。取得专利1项。目前负责国防预研项目1项,973项目1项,作为技术负责人承担国家自然科学基金项目2项,负责省级教改项目1项。"十五"期间负责完成了省和国家部委的多项研究项目。主持省级精品课程1门,指导硕士生25人(其中毕业14人),博士生5人,外国硕士留学生2人(其中毕业1人)。全省教育系统师德建设先进个人。负责国际原子能机构合作项目1项。主编教材《核动力装置用泵》。

查看详情

核动力装置用泵作者

高璞珍,自1992年起在哈尔滨工程大学工作,从事核动力装置方面的教学和科研。1992年毕业于哈尔滨船舶工程学院工程热物理专业,获硕士学位。2000年获轮机工程专业工学博士学位。2000年-2001年去法国Grenoble 的INPG大学LEGI实验室,进行微通道内流动与传热特性研究。2002年-2003年去香港理工大学进行火灾安全工程合作研究。多年来主要参加核动力装置热工水力特性方面的理论研究和实验研究。获省部级科技进步三等奖4项,发表了50余篇论文,SCI索引 6篇、EI索引 19篇。取得专利1项。目前负责国防预研项目1项,973项目1项,作为技术负责人承担国家自然科学基金项目2项,负责省级教改项目1项。"十五"期间负责完成了省和国家部委的多项研究项目。主持省级精品课程1门,指导硕士生25人(其中毕业14人),博士生5人,外国硕士留学生2人(其中毕业1人)。全省教育系统师德建设先进个人。负责国际原子能机构合作项目1项。主编教材《核动力装置用泵》。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639