选择特殊符号
选择搜索类型
请输入搜索
光纤放大器技术就是在光纤的纤芯中掺入能产生激光的稀土元素,通过激光器提供的直流光激励,使通过的光信号得到放大。传统的光纤传输系统是采用光—电—光再生中继器,这种中继设备影响系统的稳定性和可靠性,为去掉上述转换过程,直接在光路上对信号进行放大传输,就要用一个全光传输型中继器来代替这种再生中继器。适用的设备有掺铒光纤放大器(EDFA)、掺镨光纤放大器(PDFA)、掺铌光纤放大器(NDFA)。目前光放大技术主要是采用EDFA。
90年代初期,掺铒光纤放大器(EDFA)的研制成功,打破了光纤通信传输距离受光纤损耗的限制,使全光通信距离延长至几千公里,给光纤通信带来了革命性的变化,被誉为光通信发展的一个“里程碑”。那么,究竟什么是光纤放大器呢? 根据放大机制不同,OFA可分为两大类。
采用光纤的基本结构,经掺杂、加工处理或引入附加结构,能实现一定功能的光电子学器件。例如光纤放大器、光纤激光器、光纤耦合器、光纤偏振器和光纤滤波器等。光纤器件还可实现调谐、鉴频、波分复用以及传感等各种功能。光纤器件的工作原理基本上是以光纤中光波传输、耦合及外界作用所引起的变化等物理现象和规律为依据的。和平面光波导器件相比,光纤器件具有低损耗和长相互作用距离等固有优点。特别是这种器件可以用活动连接器或直接熔接接入光纤系统,接续技术成熟,操作简便,附加损耗很小,可靠性很高。这些都是平面光波导器件所无法比拟的。光纤器件按所采用的光纤结构可分为单模和多模器件,其中单模光纤器件获得广泛的应用。
制作光纤时,采用特殊工艺,在光纤芯层沉积中掺入极小浓度的稀土元素,如铒、镨或铷等离子,可制作出相应的掺铒、掺镨或掺铷光纤。光纤中掺杂离子在受到泵浦光激励后跃迁到亚稳定的高激发态,在信号光诱导下,产生受激辐射,形成对信号光的相干放大。这种OFA实质上是一种特殊的激光器,它的工作腔是一段掺稀土粒子光纤,泵浦光源一般采用半导体激光器。
当前光纤通信系统工作在两个低损耗窗口:1.55μm波段和1.31μm波段。选择不同的掺杂元素,可使放大器工作在不同窗口。
(1)掺铒光纤放大器(EDFA)
EDFA工作在1.55μm窗口,该窗口光纤损耗系数1.31μm窗低(仅0.2dB/km)。已商用的EDFA噪声低,增益曲线好,放大器带宽大,与波分复用(WDM)系统兼容,泵浦效率高,工作性能稳定,技术成熟,在现代长途高速光通信系统中备受青睐。目前,“掺铒光纤放大器(EDFA) 密集波分复用(DWDM) 非零色散光纤(NZDF) 光子集成(PIC)”正成为国际上长途高速光纤通信线路的主要技术方向。
(2)掺镨光纤放大器(PDFA)
PDFA工作在1.31μm波段,已敷设的光纤90%都工作在这一窗口。PDFA对现有光通信线路的升级和扩容有重要的意义。目前已经研制出低噪声、高增益的PDFA,但是它的泵浦效率不高,工作性能不稳定,增益对温度敏感,离实用还有一段距离。
光纤放大器相当于你喊话时举着的喇叭,传感器相当于你的鼻子,耳朵,眼睛,皮肤。。。你如果问的再具体点我可以再回答清楚点
PN输出的光纤,继电器线圈另一端接至电源正极,除了电源外还有一个输出端,继电器线圈另一端接至电源负极,该端接至继电器的线圈一端,输出端接至继电器的线图一端,PNP输出的相反光纤放大器,面板显示和实际输...
电缆分同轴电缆,电力电缆和通信电缆,各个材质 不一样,所以传输速率不一样,通信电缆的传输距离及速率受到线径及距离影响,一般0.4线径的可以传输语音信号6.6公里,0.5线径可以...
非线性OFA是利用光纤的非线性效应实现对信号光放大的一种激光放大器。当光纤中光功率密度达到一定阈值时,将产生受激拉曼散射(SRS)或受激布里渊散射(SBS),形成对信号光的相干放大。非线性OFA可相应分为拉曼光纤放大器(SRA)和布里渊光纤放大器(BRA)。目前研制出的SRA尚未商用化。
OFA的研制始于80年代,并在90年代初取得重大突破。在现代光通信系统设计中,如何有效地提高光信号传输距离,减少中继站数目,降低系统成本,一直是人们不断探索的目标。OFA是解决这一问题的关键器件,它的研制和改进在全球范围内仍方兴未艾。
随着密集波分复用(DWDM)技术、光纤放大技术,包括掺铒光纤放大器(EDFA)、分布喇曼光纤放大器(DRFA)、半导体放大器(SOA)和光时分复用(OTDM)技术的发展和广泛应用,光纤通信技术不断向着更高速率、更大容量的通信系统发展,而先进的光纤制造技术既能保持稳定、可靠的传输以及足够的富余度,又能满足光通信对大宽带的需求,并减少非线性损伤。
光纤激光器(Fiber Laser)是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
光纤是以SiO2为基质材料拉成的玻璃实体纤维,其导光原理是利用光的全反射原理,即当光以大于临界角的角度由折射率大的光密介质入射到折射率小的光疏介质时,将发生全反射,入射光全部反射到折射率大的光密介质,折射率小的光疏介质内将没有光透过。普通裸光纤一般由中心高折射率玻璃芯、中间低折射率硅玻璃包层和最外部的加强树脂涂层组成。光纤按传播光波模式可分为单模光纤和多模光纤。单模光纤的芯径较小,只能传播一种模式的光,其模间色散较小。多模光纤的芯径较粗,可传播多种模式的光,但其模间色散较大。按折射率分布的情况化分,可分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。
以稀土掺杂光纤激光器为例,掺有稀土离子的光纤芯作为增益介质,掺杂光纤固定在两个反射镜间构成谐振腔,泵浦光从M1入射到光纤中,从M2输出激光(参见右图1)。
当泵浦光通过光纤时,光纤中的稀土离子吸收泵浦光,其电子被激励到较高的激发能级上,实现了离子数反转。反转后的粒子以辐射形成从高能级转移到 基态,输出激光。
光纤耦合器(Coupler)又称分歧器(Splitter)、连接器、适配器、光纤法兰盘,是用于实现光信号分路/合路,或用于延长光纤链路的元件,属于光被动元件领域,在电信网路、有线电视网路、用户回路系统、区域网路中都会应用到。
光纤耦合器(Coupler)又称分歧器(Splitter)、连接器、适配器、法兰盘,是用于实现光信号分路/合路,
或用于延长光纤链路的元件,属于光被动元件领域,在电信网路、有线电视网路、用户回路系统、区域网路中都会应用到。光纤耦合器可分标准耦合器(属于波导式,双分支,单位1×2,亦即将光讯号分成两个功率)、直连式耦合器(连接2条相同或不同类型光纤接口的光纤,以延长光纤链路)、星状/树状耦合器、以及波长多工器(WDM,若波长属高密度分出,即波长间距窄,则属于DWDM),制作方式则有烧结(Fuse)、微光学式(Micro Optics)、光波导式(Wave Guide)三种,而以烧结式方法生产占多数(约有90%)。 烧结方式的制作法,是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作用,而其中最重要的生产设备是光纤熔接机,也是其中的重要步骤,虽然重要步骤部份可由机器代工,但烧结之后,仍须人工作检测封装,因此人工成本约占10~15%左右,再者采用人工检测封装须保品质的一致性,这也是量产时所必须克服的,但技术困难度不若DWDM 模块及光主动元件高,因此初期想进入光纤产业的厂商,大部分会从光耦合器切入,毛利则在20~30%。
近年来,有关光通信和光纤传感技术的研究十分活跃,其中许多部品已实用化,有不少正处于研究开发之中。随之而来的问题是迫切需要高性能化、高可靠性、小型和全光纤化的光学部件,而光纤型光学器件正好能满足这些要求,目前正在大力开发。如以光纤陀螺为代表的干涉式传感器,采用了光纤祸合器、光纤偏振器和光纤隔离器等主要光学器件。在光通信领域,WDM型光纤藕合器和偏振束分离器等是光放大器必不可少的重要部件。光纤偏振器可分为弯曲型光纤偏振器,片式元件型光纤偏振器a[j,利用纤芯与金属或双折射晶体相接触原理的接触型光纤偏振器等三类。本文简单介绍前两种光纤偏振器。
我们都知道光耦合器或者光复用器是把不同波长的光复用到一根光纤中的,不同的波长传载着不同的信息。那么在接收端,我们怎样才能从光纤中分离出所需的波长呢?这就要用到光滤波。光滤波器是用来进行波长选择的仪器,它可以从众多的波长中挑选出所需的波长,而除此波长以外的光将会被拒绝通过。它可以用于波长选择、光放大器的噪声滤除、增益均衡、光复用/解复用。
光纤放大器论文.
学号 10043112 姓名 黄任军 第 1页 共 16 页 哈 尔 滨 学 院 答 题 纸 课程 光纤通信 2013-2014 学年第 1 学期 课程代码 40425012 专业班级 电气自动化 10-1 班 姓名: 黄任军 学号: 10043112 成绩 评阅人 检查项目 权重 得 分 (1)选题意义: 文献分析是否透 彻,选题是否为研究领域的前 沿或热点话题。 20 (2)学术价值和应用价值 :论文 结构是否合理,概念是否准确, 论证是否合乎逻辑;分析问题 是否有一定的深度,解决问题 是否有一定的创新。 40 (3)论文摘要:摘要能否简要地 阐明研究目的、方法、范围、 结果及结论。 20 (4) 论文格式: 论文格式符合 要求。 10 (5)文献引用:文献格式是否规 范,引用是否够全面。 10 合计 100 学号 100
多模光纤放大器输出光分析
根据不同的泵浦方式,对多模光纤放大器运用多模速率方程组,采用四阶龙格-库塔法数值计算和分析了在不同泵浦方式下的泵浦效率和信号光在光纤放大器中的传输、放大行为,并研究了在光纤放大器光纤长度有微小变化(mm量级)的情况下,输出光的光束质量与光纤长度的关系。结果表明:输出信号光的光束质量因子随光纤长度微小变化而呈准周期变化,周期与信号光耦合入光纤放大器的本征模式间的传播常数差有关。
光纤放大器是一种对光纤传输系统中的光信号进行直接在线光放大的器件。它不仅结构简单,与系统连接方便,而且它的耦合效率和能力转换效率高,有很大的带宽潜力。另外,由于光纤介质的激光损耗阈值远大于半导体材料,因此光纤放大器可用来取代光纤通信系统中传统的电子中继器或作为接收机的前置放大器,以提高接收机的灵敏度和信噪比,增加通信距离。目前的光纤放大器主要有4种:消逝波耦合光纤放大器、晶体光纤放大器、受激散射光纤放大器、稀土掺杂光纤放大器。其中掺杂光纤放大器(RDFA)是在光纤的纤芯中掺入能产生光子的稀土元素,通过稀土元素的作用,将激光二极管LD泵浦发出的光能量转化到信号光上,可实现对信号光的直接放大,具有实时、宽带、在线、低损耗的全光放大功能。
由于RDFA具有掺杂浓度高,互作用区大,能量转换率高,制作较容易等显著的优点,近20多年来得到了迅猛发展。同时,RDFA的成熟与商用化也极大地促进了长距离光纤通信系统、波分复用(WDM)系统等重要技术的发展。
虽然早在1964年就开始研究光纤放大器,但随着低损耗掺杂光纤工作特性和制造技术的不断发展,直到1986年才开始实际使用。稀土元素(或镧系元素)由原子量为58~71且性质相近的14个原子组成。当稀土元素掺杂于石英或其他玻璃光纤中时,会变成三阶离子。许多不同的稀土离子,如铒、钬、钕、钐、铥和镱等,都可以用于制造光纤放大器,能工作在从可见光到红外区的不同波长上。放大器的工作特性(如工作波长、增益宽度和噪声等)是由掺杂离子而不是光纤决定的,光纤起基底介质的作用。
RDFA有3种基本结构:前向泵浦、后向泵浦和双向泵浦。在前向泵浦(或正向泵浦)中泵浦光与信号光以相同方向通过增益光纤,后向泵浦(或反向泵浦)两者则以相反方向通过增益光纤,双向泵浦结构中泵浦光在2个方向同时通过增益光纤。不管是哪种泵浦方式的光纤放大器,基本构件都包括增益光纤、泵浦光、波分复用器/光耦合器等。增益光纤是在石英光纤的纤芯中,掺入一些三价稀土金属元素,如Er(铒)、Pr(镨)、Tm(铥)等,形成的一种特殊光纤,它是掺杂光纤放大器中核心部分;泵浦光用来向稀土元素提供能量,使稀土元素实现粒子数反转,这是产生光放大的必要条件之一;波分复用器(或光耦合器)的作用是将信号光与泵浦光进行复合;为了防止器件和焊点的反射,降低光纤放大器的噪声指数,增加稳定性,一般还在其输入和输出端加入光隔离器;为了提高系统的信噪比,通常在输出端加入光滤波器。实用的光纤放大器中,还包括带自动调整功能的泵浦源驱动电路、自动温控和自动功率控制等保护功能的辅助电路。有的辅助电路中还具有通过计算机通信协议完成人机对话和对放大器的网络监控功能。
光纤分束器就是将一根光纤内的波长、能量、偏振等特性进行重新分配到不同光纤内的一种器件。
分能量的一般叫光纤分路器或者光纤耦合器,分波长是波分复用器,分偏振的是偏振分束器等等。
光纤分束器是对光信号实现分路、合路和分配的无源器件,是波分复用、光纤局域网、光线有线电视网以及某些测量仪表中不可缺少的光学器件。
光纤偏振器可分为弯曲型光纤偏振器,片式元件型光纤偏振器,利用纤芯与金属或双折射晶体相接触原理的接触型光纤偏振器等三类。