选择特殊符号

选择搜索类型

热门搜索

首页 > 百科 > 土建百科

混凝土稳定温度

混凝土稳定温度简介

中文名称
混凝土稳定温度
英文名称
stable temperature of concrete
定  义
在浇筑完成后的一定时间内,混凝土内部不再发生较大变化时的温度。
应用学科
水利科技(一级学科),水利工程施工(二级学科),水工混凝土施工(水利)(三级学科)

查看详情

混凝土稳定温度造价信息

  • 市场价
  • 信息价
  • 询价

金刚砂透水混凝土

  • 透水混凝土材料:微晶孔隙;1立方=1.8吨
  • t
  • 洪发
  • 3%
  • 深圳市洪发建筑工程有限公司
  • 2022-12-07
查看价格

混凝土U型截水槽

  • 混凝土截水槽规格:300×250×60麻灰色c30
  • 子光建材
  • 3%
  • 广州市子光建材有限公司
  • 2022-12-07
查看价格

金刚砂透水混凝土

  • 透水混凝土材料:微晶孔隙;1立方=1.8吨
  • t
  • 禹智环保
  • 3%
  • 禹智环保科技(深圳)有限公司
  • 2022-12-07
查看价格

金刚砂透水混凝土

  • 透水混凝土材料:微晶孔隙;1立方=1.8吨
  • t
  • 蛇口建安
  • 3%
  • 深圳市蛇口建筑安装工程有限公司
  • 2022-12-07
查看价格

混凝土

  • C40/汽车泵
  • m3
  • 3%
  • 漳州路桥翔通建材有限公司
  • 2022-12-07
查看价格

混凝土

  • C10砼20石 现场搅拌站
  • 佛山市顺德区2009年4月信息价
  • 建筑工程
查看价格

混凝土

  • C15砼20石 现场搅拌站
  • 佛山市顺德区2009年4月信息价
  • 建筑工程
查看价格

混凝土

  • C20砼20石 现场搅拌站
  • 佛山市顺德区2009年4月信息价
  • 建筑工程
查看价格

混凝土

  • C40砼20石 现场搅拌站
  • 佛山市顺德区2009年4月信息价
  • 建筑工程
查看价格

混凝土

  • C45砼20石 现场搅拌站
  • 佛山市顺德区2009年4月信息价
  • 建筑工程
查看价格

湿贫混凝土

  • 湿贫混凝土
  • 1500m³
  • 1
  • 湿贫混凝土
  • 中档
  • 不含税费 | 含运费
  • 2019-04-28
查看价格

抛光混凝土

  • 抛光混凝土
  • 1000m²
  • 1
  • 高档
  • 含税费 | 含运费
  • 2013-08-29
查看价格

颜色混凝土

  • 颜色混凝土
  • 1m³
  • 1
  • 普通
  • 含税费 | 含运费
  • 2013-05-08
查看价格

混凝土切割

  • 混凝土切割
  • 11111m/m³
  • 1
  • 不含税费 | 不含运费
  • 2012-03-15
查看价格

混凝土

  • 材质:混凝土规格: C20透水混凝土
  • 2000m³
  • 3
  • 深圳市安托山混凝土有限公司、深圳市中天元实业有限公司、深圳市
  • 高档
  • 含税费 | 含运费
  • 2022-05-20
查看价格

混凝土稳定温度常见问题

查看详情

混凝土稳定温度文献

用单极驱动实现稳定温度的热电制冷器 用单极驱动实现稳定温度的热电制冷器

用单极驱动实现稳定温度的热电制冷器

格式:pdf

大小:241KB

页数: 1页

用单极驱动实现稳定温度的热电制冷器——文章介绍了用单极驱动实现稳定温度的热电制冷器

沥青混合料动稳定度温度特性分析   沥青混合料动稳定度温度特性分析  

沥青混合料动稳定度温度特性分析  

格式:pdf

大小:241KB

页数: 未知

为了分析沥青混合料动稳定度的温度特性,对选用的2种沥青、3种矿料级配的沥青混合料进行不同试验温度条件下的车辙试验,并利用给出的BoltzmannS形成长曲线模型,量化分析沥青混合料动稳定度变化规律,提高了传统的60℃动稳定度的适用性。试验结果表明:沥青混合料“动稳定度一试验温度”试验结果与BoltzmannS形成长曲线有良好的相关性,不同沥青种类及混合料类型条件下曲线拟合的相关系数均在0.97以上;沥青混合料动稳定度随温度变化而产生突变的温度节点出现在软化点附近0~5℃,并且在选用的温度范围内,改性沥青混合料对环境温度的敏感程度整体上要大于基质沥青混合料。

温度稳定性SAW频率温度稳定性

为了提高SAW谐振敏感元件的频率稳定性,需要在电路中加入一定的补偿电路。这样,在很宽的温度范围内,SAW谐振敏感元件就能以高精度在一个给定的频率上振荡。

为了提高稳定性,在制造SAW器件时,必须在工作频率范围内(例如300~400 MHz)进行老化试验,以确定SAW器件老化特性的几种因素的影响。例如,为减小老化的影响,必须采取密封装置、真空烘干和抽真空封装等措施。另外,在安装SAW器件的密封盒中,不应该有会放出气体的物质,也不要在SAW空腔谐振器内喷涂单分子有机物或其他材料,以免影响谐振器长期工作性能或导致频率漂移及稳定性的降低。所有这些措施都将会大大提高SAW谐振敏感元件的频率稳定度。

定量分析谐振器的老化情况是分析研究稳定度的一个主要任务。无论是石英谐振器、体波谐振器还是SAW谐振敏感元件,它们的特性随时间的变化都是很小的。在它们工作一年以后,其频率稳定精度仍可达101或更小。这是因为谐振器是无源装置,一般都是将谐振器作为频率反馈元件而构成谐振器电路。另外,采用集成温度补偿、双通道SAW谐振敏感元件以及先进的高真空封装技术,可使频率和温度稳定度达到很高水平。

查看详情

温度稳定性概念

温度稳定性是指压电材料的性能随温度变化的特性。不同材料的各种性能随温度变化没有一个共同的规律,因此只表征材料主要参数的变化关系。通常用“正温最大相对频移”和“负温最大相对频移”的方法来表示压电材料谐振频率随温度的变化特性,其关系为:

正温最大相对漂移=[△fr(正温最大)]/[fr(25)]

负温最大相对漂移=[△fr(负温最大)]/[fr(25)]

式中fr(25)表示在常温(通常指25°C)测得的频率值,△fr(正温最大)表示正温范围内(如25~85°C)相对于fr(25)的频率最大变化值,△fr(负温最大)表示负温范围内(如-55~25°C)相对于fr(25)的频率最大变化值。

压电材料其它参数的温度稳定性,也可用上述方法来表示。

另外,还有一种用谐振频率温度系数来表示材料温度稳定性的方法。谐振频率温度系数是指每变化1°C时谐振频率的相对变化值。这种方法对线性变化的材料是合适的,但对非线性变化的材料是不合理的。由于压电陶瓷的温度特性基本上都属非线性变化,因此,一般均不用后一种方法来表示。

查看详情

磁稳定性温度稳定性

当钕铁硼永磁体工作环境的温度在一定范围内变化时,磁体的磁通量Φ(TotalFlux)都会发生相应的变化,如下图示:

我们用剩磁可逆温度系数αBr、Hcj温度系数βHcj和磁通不可逆损失hirr来衡量钕铁硼磁性能随温度而发生的变化。

磁稳定性剩磁温度系数

剩磁可逆温度系数αBr:当工作环境温度自室温T0升至温度T1时,钕铁硼的剩磁Br也从B0降至B1;当环境温度恢复至室温时,Br并不能恢复到B0,而只能到B0'。此后当环境温度在T0和T1间变化时(假设变化量不是很大),Br的变化是线性可逆的。

同理,我们可以得出内禀矫顽力Hcj的温度系数βHcj如下:

温度系数α和β所衡量的只是磁性能的可逆变化,即是恢复温度即可恢复磁性能。

磁稳定性磁通公式

现实中我们更常见到的是不可逆转的变化,特别是在磁体开路状态下测试其磁通量(TotalFlux)随温度变化至T1而产生的不可恢复的相对变化量,我们称之为温度T1下磁通的不可逆损失hirr,公式为:

从使用的角度看,是希望αBr、βHcj和hirr都是越小越好。但事实上在开路状态下,对于特定工作点(即磁体元件的尺寸和形状)的NdFeB磁体,其αBr较高,一般为-0.11-0.12%/℃;βHcj也较高,一般为-0.6-0.7%/℃(但其与温度段有直接关系)。那么对于αBr和βHcj何者更重要呢?这取决于工作点的选择,如果磁体的工作点较高,即B/H>>1时αBr起主要的影响作用,而当B/H<<1时βHcj对磁场的稳定性起主要影响作用。而对于磁通的不可逆损失hirr,通常要求>1,在该磁体材料允许使用的最高温度下,该磁体的hirr应≤5%.比如33SH性能标准块(2″×2″×1″)在恒温150℃×1小时后恢复至常温,其hirr<5%.

当外界温度自室温上升,磁性能初始的损失是可逆的,恢复温度即可恢复磁性能;其后包括了不可逆但可恢复的损失,也就是说此时的磁性能损失虽不能通过恢复温度来挽回,但通过再充磁还是可以恢复的;若温度升至磁体的居里温度以上时,磁体的组织结构遭到不可恢复的破坏,即为不可逆且不可恢复的磁性能损失。

磁稳定性研究进展

一般使用情况下,解决温度稳定性的办法是做老化处理,以消除磁体不稳定的因素(当然,这是以损失部分磁性为代价的,一般为10%)。老化处理的温度和时间根据用途或用户要求来做。例如:可在开水中沸煮3小时,或在烘箱中附铁板加热老化,也可在高真空烧结炉中准确恒温125℃×1.5小时。另外还有一些办法,可通过添加某些元素直接提高磁体本身的温度稳定性。如微波通讯器件的应用领域,要求磁感应强度温度系数αBr越低越好,近几年此方面的研究有了很大进展:

①添加Co,能有效地提高居里温度(一般加入1at.%Co,可提高Tc约10℃);同时,添加Co,可使3d亚点阵间的交换作用加强,从而使αBr得以提高。而加入Dy,尽管会降低居里温度,但由于其磁矩与Fe亚点阵磁矩反平行耦合,故亦可改善αBr。如同时添加:用Co替代Fe,用Dy替代Nd,且当比例适当时,NdFeB磁体的αBr可降到0。如对成分为(Nd0.5Dy0.5)15.5Fe51Co26B7.5磁体,其磁性能即可达:Br=0.88T;Hcj=1.23MA/M-1(15KOe),Hcb=525.4KAM-1;BHm=119.4KJ/M3,αBr=0.00%/℃;磁通不可逆损失≤5%.

②在此基础上,添加Ga,W,可得到低αBr的烧结NdFeB磁体。

③而磁体中添加Tb,则不仅可得到低的αBr,而且能保持高的Hcj和BHm。

磁稳定性电机磁钢

再比如电机使用的磁钢,对αBr没有太大要求,但却要求βHcj越低越好。βHcj改善很难,但也有一些研究成果表明:

①添加Dy、Tb、Ga,能改善烧结磁体的βHcj;

②添加Sn,能改善烧结磁体的βHcj:NdFeB磁体或含Al、Dy的NdFeB磁体添加Sn,使局部有效退磁因子Neff减小,从而使矫顽力温度系数βHcj得以降低。但βHcj值的降低效果有限。故实际应用中,主要是通过提高Hcj来提高βHcb,降低磁通不可逆损失。经验表明:工作点Pc=2,Hcj≥17KOe时,βHcb能从-0.6%/℃降到-0.2%/℃。

③关于磁通不可逆损失hirr:运用磁学唯象理论知识,可推导磁通不可逆损失的计算公式为:

hirr=(其中Hd(T)为退磁场)

如假定αBr、βHcj随温度线性变化,则进一步有:

磁通不可逆损失hirr=(CGS)

磁稳定性降低磁通途径

据上面的公式可知,要降低磁通不可逆损失,可有以下几个途径:

·添加Dy、Nb、V、Ga等微量元素,以降低βHcj,从而降低磁通不可逆损失。

·添加微量元素,降低Neff:既降低D值,也降低βHcj,从而最终降低磁通不可逆损失:研究表明:钕铁硼磁体中添加微量Sn,可降低合金内部的局域有效退磁场,也可降低矫顽力温度系数βHcj,从而使磁体磁通不可逆损失得以降低。

·通过改善磁体粒度分布及晶粒一致性,以减小Br-Mk的差值,从而降低磁通不可逆损失。

·选择合适的长径比,得到合适的D值。

·选择合适的使用温度,使磁通不可逆损失控制在所需的范围。

查看详情

相关推荐

立即注册
免费服务热线: 400-888-9639