选择特殊符号
选择搜索类型
请输入搜索
红外线二极管,由红外辐射效率高的材料(常用砷化镓 GaAs)制成 PN结,外加正向偏压向 PN结注入电流激发红外光的二极管。它是窄带分布,为普通 CCD 黑白摄像机可感受的范围。
红外线二极管阳极(P极)电压加正,阴极(N极)电压加负,此时二极管所加之电压为正向电压,同时亦产生 正向电流,提供了红外线发光二极管发射出光束的能量,其发光的条件与一般的发 光二极管(LED)一样,只是红外线为不可见光。一般而言砷化镓的红外线发光二极 体约须1V,而镓质的红色发光二极管切入电压约须1.8V;绿色发光二极管切入电压 约须2.0V左右。当加入之电压超过切入电压之后,电流便急速上升,而周围温度对 二极管的切入电压影响亦很大,当温度较高时,将使其切入电压数值降低,反之, 切入电压 升高。 红外线发光二极管工作在反向电压时,只有微小的漏电流,但反向电压超过崩 4溃电压时,便立即产生大量的电流,将使元件烧毁,一般红外线二极管反向耐压之 值约为3~6V,在使用时尽量避免有此一情形发生。
红外线二极管的发射强度因发射方向而异。发射强度是以最大值为基准,方向角度即为发射强度的相对值。当方向角度为零度时,其放射强度定义为 100%,当方向角度越大时,其放射强度相对的减少,发射强度如由光轴取其方向角度一半时,其值即为峰值的一半,此角度称为方向半值角,此角度越小即代表元件之指向性越灵敏。一般使用红外线发光二极管均附有透镜,使其指向性更灵敏。
红外二极管大多都是采用无色透明树脂封装或黑色、淡蓝色树脂封装三种形式,无色透明树脂封装的管子,可以透过树脂材料观察,若管芯下有一个浅盘,即是红外二极管,光电二极管和光电三极管无此浅盘;若是深色树脂封装的,可借助于万用表R×1k档进行区别,红外发光二极管的反向电阻通常为数百千欧至无穷大,其正向电阻有15~40kΩ之间(视不同型号和新旧程度而异);而光电二极管的正向电阻仅为10kΩ左右,光电三极管的正反向电阻均为无穷大(一律为遮光条件下所测值)。
红外线二极管阳极(P极)电压加正,阴极(N极)电压加负,此时二极管所加之电压为正向电压,同时亦产生 正向电流,提供了红外线发光二极管发射出光束的能量,其发光的条件与一般的发 &...
不能,不是一种东西,旧遥控器上拆个就是了
红外线发射管是由红外发光二极管构成的一个一个原件,而红外发光二极管是发光二级管中的一种,所以,发射管是是应用,发光二极管是组成原件。下面介绍红外发射管与发光二极管。红外发射管是由红外发光二级管矩组成发...
红外线二极管由红外辐射效率高的材料(常用砷化镓 GaAs)制成 PN结,外加正向偏压向 PN结注入电流激发红外光的二极管。它是窄带分布,为普通 CCD 黑白摄像机可感受的范围。其最大的优点是可以完全无红暴
发光二极管所发射的光波长,常因其所用的材料而异。砷化镓的红外线发光二极管,其峰值发 光波长为 940~950 nm,其中虚线部分,是 Si 质光电晶体的相对分光感度,光电晶体的感光范围很大,其范围由 500nm到 1100nm,而其感光峰值约在 800nm左右,所以光电晶体除了平常用来做可见光线侦测外,也常用来做红外线接收器。但使用光电晶体当红外线接收器时,须注意其它光线的干扰,为排除干扰可以在接收器的放大部份加入一带通滤波器,以让红外线发光二极管发射出来光线的频率通过,如此可以减少很多不必要的干扰。
主要参数
λpeak 峰值波长
主要波长有:850nm、870nm、880nm、940nm、980nm;
就辐射功率而言:850nm>880nm>940nm
1.用三用表测量识别可用500型或其他型号指针式三用表的Rxlk电阻挡,测量红外线二极管的极间电阻,以判别红外线二极管。
判据一:在红外二极管的端部不受光线照射的条件下调换表笔测量,发射管的正向电阻小,反向电阻大,且黑表笔接正极(长引脚)时, 电阻小的(1k-20k)是发射管。正反向电阻都很大的是接收管。
判据二:黑表笔接负极(短引脚)时电阻大的是发射管,电阻小并且三用表指针随着光线强弱变化时,指针摆动的是接收管。注:(1)黑表笔接正极,红表笔接负极时测量正向电阻。 ( 2)电阻大是指三用表指针基本不动。
一般可见光的发光二极管其输出光的强度是以光度表示之,而不可见光如红外线发光二极管其输出光的能量大小,是以发射束 Fe 表示,其单位为瓦特。发射束的意义是单位时间内,所能发射、搬移光的能量的多寡。红外线发光二极管的发射束大体上也是随电流比例而定,如下图所示,为发射束和正向电流的特性曲线。同时,发射束亦受周围温度影响,温度下降时,发射束反而增强;温度上升时,则下降(正向电流一般都有一固定值),然而因热损失之故,元件上的温度便形增加,如此发光效率就会受到影响而降低。
红外线发光二极管的包装种类分为三种,透镜消除型、陶瓷型及树脂分子型。若在使用环境上,用途上要求严格的话,应使用陶瓷型的最佳。红外线发光二极管的外型。
红外线原理及物理特性
红外线的原理及物理特性 红外线是太阳光线中众多不可见光线中的一种,由德国科学家霍胥尔于 1800 年发现, 又称为红外热辐射 ,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度 计,试图测量各种颜色的光的加热效应。结果发现,位于红光外侧的那支温度计升温最快。 因此得到结论: 太阳光谱中,红光的外侧必定存在看不见的光线, 这就是红外线。 也可以当 作传输之媒介。太阳光谱上红外线的波长大于可见光线,波长为 0.75~1000μm。红外线可 分为三部分,即近红外线,波长为 0.75 ~1.50 μm之间;中红外线,波长为 1.50 ~6.0 μm 之间;远红外线,波长为 6.0~ l000 μm之间。 真正的红外线夜视仪是光电倍增管成像, 与望远镜原理完全不同, 白天不能使用, 价格 昂贵且需电源才能工作。 【红外线的物理性质】 在光谱中波长自 0.76 至 400 微米的一段称为
现在使用的遥控器使用的频率都是38KHZ,是用一定方式对不同的按键进行编码,通过专用的集成电路产生调制波,通过红外线二极管发射出去。电视机接收之后进行解码再执行相应的动作。不同频率的红外脉冲信号对应不同的命令,而这种脉冲是用石英实现的,通电之后石英的震动频率非常快而且很均匀,所以可以用它实现不同的脉冲频率。
通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。
遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC的uPD6121G组成发射电路为例说明编码原理。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:
采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制的"0";以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的"1"。
上述"0"和"1"组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射。
遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制"0"和"1"的个数不同而不同,大约在45~63ms之间。
当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这108ms发射代码由一个起始码(9ms),一个结果码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。
代码格式(以接收代码为准,接收代码与发射代码反向)
①位定义
②单发代码格式
③连发代码格式
注:代码宽度算法:
16位地址码的最短宽度:1.12×16=18ms 16位地址码的最长宽度:2.24ms×16=36ms
已知8位数据代码及其8位反代码的宽度和不变:(1.12ms+2.24ms)×8=27ms
∴32位代码的宽度为(18ms+27ms)~(36ms+27ms)
1. 解码的关键是如何识别"0"和"1",从位的定义我们可以发现"0"、"1"均以0.56ms的低电平开始,不同的是高电平的宽度不同,"0"为0.56ms,"1"为1.68ms,所以必须根据高电平的宽度区别"0"和"1"。如果从0.56ms低电平过后,开始延时,0.56ms以后,若读到的电平为低,说明该位为"0",反之则为"1",为了可靠起见,延时必须比0.56ms长些,但又不能超过1.12ms,否则如果该位为"0",读到的已是下一位的高电平,因此(1.12ms+0.56ms)/2=0.84ms最为可靠,一般取0.84ms左右均可。
2.根据码的格式,应该等待9ms的起始码和4.5ms的结果码完成后才能读码。
一体化红外线接收器是一种集红外线接收和放大于一体,不需要任何外接元件,就能完成从红外线接收到输出与TTL电平信号兼容的所有工作,而体积和普通的塑封三极管大小一样,它适合于各种红外线遥控和红外线数据传输。