选择特殊符号
选择搜索类型
请输入搜索
Preface
Preface to the third edition
Overview of the book
Acknowledgements
1 Introduction to knowledge-based intelligent systems
1.1 Intelligent machines, or what machines can do
1.2 The history of artificial intelligence, or from the 'Dark Ages' to knowledge-based systems
1.3 Summary
Questions for review
References
Rule-based expert systems
2.1 Introduction, or what is knowledge?
2.2 Rules as a knowledge representation technique
2.3 The main players in the expert system development team
2.4 Structure of a rule-based expert system
2.5 Fundamental characteristics of an expert system
2.6 Forward chaining and backward chaining inference techniques
2.7 MEDIA ADVISOR: a demonstration rule-based expert system
2.8 Conflict resolution
2.9 Advantages and disadvantages of rule-based expert systems
2.10 Summary
Questions for review
References
Uncertainty management in rule-based expert systems
3.1 Introduction, Or what is uncertainty?
3.2 Basic probability theory
3.3 Bayesian reasoning
3.4 FORECAST: Bayesian accumulation of evidence
3.5 Bias of the Bayesian method
3.6 Certainty factors theory and evidential reasoning
3.7 FORECAST: an application of certainty factors
3.8 Comparison of Bayesian reasoning and certainty factors
3.9 Summary
Questions for review
References
Fuzzy expert systems
4.1 Introduction, or what is fuzzy thinking?
4.2 Fuzzy sets
4.3 Linguistic variables and hedges
4.4 Operations of fuzzy sets
4.5 Fuzzy rules
4.6 Fuzzy inference
4.7 Building a fuzzy expert system
4.8 Summary
Questions for review
References
Bibliography
Frame-based expert systems
5.1 Introduction, or what is a frame?
5.2 Frames as a knowledge representation technique
5.3 Inheritance in frame-based systems
5,4 Methods and demons
5.5 Interaction of frames and rules
5.6 Buy Smart: a frame-based expert system
S.? Summary
Questions for review
References
Bibliography
6 Artificial neural networks
6.1 Introduction, or how the brain works
6.2 The neuron as a simple computing element
6.3 The perceptron
6.4 Multilayer neural networks
6.5 Accelerated learning in multilayer neural networks
6.6 The Hopfield network
6.7 Bidirectional associative memory
6.8 Self-organising neural networks
6.9 Summary
Questions for review
References
Evolutionary computation
7.1 Introduction, or can evolution be intelligent?
7.2 Simulation of natural evolution
7.3 Genetic algorithms
……
Hybrid intelligent systems
Knowledge engineering
Data mining and knowledge discovery
Glossary
Appendix: AI tools and vendors
Index2100433B
《人工智能:智能系统指南(英文版)(第3版)》为经典原版书库之一。
作者:(澳大利亚)尼格尼维斯基 (Michael Negnevitsky)
第2版前言第1版前言第1章 土方工程1.1 土的分类与工程性质1.2 场地平整、土方量计算与土方调配1.3 基坑土方开挖准备与降排水1.4 基坑边坡与坑壁支护1.5 土方工程的机械化施工复习思考题第2...
第一篇 综合篇第一章 绿色建筑的理念与实践第二章 绿色建筑评价标识总体情况第三章 发挥“资源”优势,推进绿色建筑发展第四章 绿色建筑委员会国际合作情况第五章 上海世博会园区生态规划设计的研究与实践第六...
前言第一章 现代设计和现代设计教育现代设计的发展现代设计教育第二章 现代设计的萌芽与“工艺美术”运动工业革命初期的设计发展状况英国“工艺美术”运动第三章 “新艺术”运动“新艺术”运动的背景法国的“新艺...
电厂图书目录
柜号 序号 G1 1 G1 2 G1 3 G2 4 G2 5 G2 6 G2 7 G2 8 G2 9 G1 10 G2 11 G2 12 G2 13 G2 14 G1 15 G1 16 G1 17 G2 18 G2 19 G2 20 G1 21 G3 22 G3 23 G3 24 G3 25 G3 26 G3 27 G1 28 G1 29 G3 30 G3 31 G2 32 G2 33 G2 34 G2 35 G2 36 G2 37 G2 38 下右 39 下右 40 下右 41 下右 42 下右 43 下右 44 下右 45 下右 46 下右 47 下右 48 下右 49 下右 50 下右 51 下右 52 下右 53 下左 54 下左 55 下左 56 下左 57 下左 58 下左 59 下左 60 下左 61 下左 62 下左 63 下左 64 下左 65 下左 66 下左 67 下
工程常用图书目录
1 工程常用图书目录(电气、给排水、暖通、结构、建筑) 序号 图书编号 图书名称 价格(元) 备注 JTJ-工程 -24 2009JSCS-5 全国民用建筑工程设计技术措施-电气 128 JTJ-工程 -25 2009JSCS-3 全国民用建筑工程设计技术措施-给水排水 136 JTJ-工程 -26 2009JSCS-4 全国民用建筑工程设计技术措施-暖通空调 ?动力 98 JTJ-工程 -27 2009JSCS-2 全国民用建筑工程设计技术措施-结构(结构体系) 48 JTJ-工程 -28 2007JSCS-KR 全国民用建筑工程设计技术措施 节能专篇-暖通空调 ?动力 54 JTJ-工程 -29 11G101-1 混凝土结构施工图平面整体表示方法制图规则和构造详图(现浇混凝土框架、剪力墙、框架 -剪力墙、框 支剪力墙结构、现浇混凝土楼面与屋面板) 69 代替 00G101
《人工智能:智能系统指南(原书第3版)》既可以作为计算机科学相关专业本科生的入门教材,也可以作为非计算机科学专业读者的自学参考书。
出版者的话
译者序
第3版前言
第1版前言
本书概要
致谢
第1章基于知识的智能系统概述
1.1智能机
1.2人工智能的发展历史,从“黑暗时代”到基于知识的系统
1.2.1“黑暗时代”,人工智能的诞生(1943—1956年)
1.2.2人工智能的上升期,远大目标积极实现的年代(1956年~20世纪60年代晚期)
1.2.3没有履行的诺言,来自现实的冲击(20世纪60年代晚期—20世纪70年代早期)
1.2.4专家系统技术,成功的关键因素(20世纪70年代早期~20世纪80年代中期)
1.2.5如何使机器学习,神经网络的重生(20世纪80年代中期至今)
1.2.6进化计算,在尝试中学习(20世纪70年代早期至今)
1.2.7知识工程的新纪元,文字计算(20世纪80年代后期至今)
1.3小结
复习题
参考文献
第2章基于规则的专家系统
2.1知识概述
2.2知识表达技术——规则
2.3专家系统研发团队的主要参与者
2.4基于规则的专家系统的结构
2.5专家系统的基本特征
2.6前向链接和后向链接推理技术
2.6.1前向链接
2.6.2后向链接
2.7 MEDIA ADVISOR:基于规则的专家系统实例
2.8冲突消解
2.9基于规则的专家系统的优点和缺点
2.10小结
复习题
参考文献
第3章基于规则的专家系统中的不确定性管理
3.1不确定性简介
3.2概率论基本知识
3.3贝叶斯推理
3.4FORECAST:论据累积的贝叶斯方法
3.5贝叶斯方法的偏差
3.6确信因子理论和基于论据的推理
3.7FORECAST:确信因子的应用
3.8贝叶斯推理和确信因子的对比
3.9小结
复习题
参考文献
第4章模糊专家系统
4.1概述
4.2模糊集
4.3语言变量和模糊限制语
4.4模糊集的操作
4.5模糊规则
4.6模糊推理
4.6.1Mamdani—style推理
4.6.2 Sugeno—style推理
4.7建立模糊专家系统
4.8小结
复习题
参考文献
参考书目
第5章基于框架的专家系统
5.1框架简介
5.2知识表达技术——框架
5.3基于框架的系统中的继承
5.4方法和守护程序
5.5框架和规则的交互
5.6基于框架的专家系统实例:Buy Smart
5.7小结
复习题
参考文献
参考书目
第6章人工神经网络
6.1人脑工作机制简介
6.2作为简单计算元素的神经元
6.3感知器
6.4多层神经网络
6.5多层神经网络的加速学习
6.6 Hopfield网络
6.7双向联想记忆
6.8自组织神经网络
6.8.1Hebbian学习
6.8.2竞争学习
6.9小结
复习题
参考文献
第7章进化计算
7.1进化是智能的吗
7.2模拟自然进化
7.3遗传算法
7.4遗传算法为什么可行
7.5案例研究:用遗传算法来维护调度
7.6进化策略
7.7遗传编程
7.8小结
复习题
参考文献
参考书目
第8章混合智能系统
8.1概述
8.2神经专家系统
8.3神经—模糊系统
8.4 ANFIS
8.5进化神经网络
8.6模糊进化系统
8.7小结
复习题
参考文献
第9章知识工程
9.1知识工程简介
9.1.1问题评估
9.1.2数据和知识获取
9.1.3原型系统开发
9.1.4完整系统开发
9.1.5系统评价和修订
9.1.6系统集成和维护
9.2专家系统可以解决的问题
9.5模糊专家系统可以解决的问题
9.4神经网络可以解决的问题
9.5遗传算法可以解决的问题
9.6混合智能系统可以解决的问题
9.7小结
复习题
参考文献
第10章数据挖掘和知识发现
10.1数据挖掘简介
10.2统计方法和数据可视化
10.3主成分分析
10.4关系数据库和数据库查询
10.5数据仓库和多维数据分析
10.6决策树
10.7关联规则和购物篮分析
10.8小结
复习题
参考文献
术语表
附录人工智能工具和经销商
索引2100433B
作者:(澳大利亚)尼格尼维斯基(Michael Negnevitsky) 译者:陈薇